给你一个二叉搜索树的根节点 root
,返回 树中任意两不同节点值之间的最小差值 。
差值是一个正数,其数值等于两值之差的绝对值。
示例 1:
输入:root = [4,2,6,1,3]
输出:1
示例 2:
输入:root = [1,0,48,null,null,12,49]
输出:1
提示:
[2, 104]
0 <= Node.val <= 105
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int result = INT_MAX;TreeNode * pre = nullptr;void traversal(TreeNode* root) {if (root == nullptr){return;}traversal(root->left);if (pre != nullptr) {result = min(result, abs(root->val - pre->val));}// 记录前一个节点pre = root;traversal(root->right);}int getMinimumDifference(TreeNode* root) {traversal(root);return result;}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def __init__(self):self.result = float("INF")self.pre = Nonedef traversal(self, root):if not root:returnself.traversal(root.left)if self.pre != None:self.result = min(self.result, abs(root.val - self.pre.val))self.pre = root self.traversal(root.right)def getMinimumDifference(self, root: Optional[TreeNode]) -> int:self.traversal(root)return self.result
给你一个含重复值的二叉搜索树(BST)的根节点 root
,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。
如果树中有不止一个众数,可以按 任意顺序 返回。
假定 BST 满足如下定义:
示例 1:
输入:root = [1,null,2,2]
输出:[2]
示例 2:
输入:root = [0]
输出:[0]
提示:
[1, 104]
内-105 <= Node.val <= 105
**进阶:**你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector results;int maxCount = 0;int count = 0;TreeNode * pre = nullptr;void searchBST(TreeNode * root) {if (root == nullptr) return;// 左searchBST(root->left);// 中// 判断前节点的值是否需要更新 countif (pre == nullptr) {count = 1;} else if (pre != nullptr && root->val == pre->val) {count++;}else{count = 1;}pre = root;// 判断是否需要更新result。if (count == maxCount) {results.push_back(root->val);}if (count > maxCount) {maxCount = count;results.clear();results.push_back(root->val);}// 右searchBST(root->right);}vector findMode(TreeNode* root) {searchBST(root);return results;}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def __init__(self):self.results = []self.preNode = Noneself.maxCount = 0self.count = 0def searchBST(self, root):if not root:returnself.searchBST(root.left)if not self.preNode:self.count = 1elif self.preNode.val == root.val:self.count += 1else:self.count = 1self.preNode = rootif self.count == self.maxCount:self.results.append(root.val)if self.count > self.maxCount:self.maxCount = self.countself.results = []self.results.append(root.val)self.searchBST(root.right)def findMode(self, root: Optional[TreeNode]) -> List[int]:self.searchBST(root)return self.results
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。
示例 2:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。
示例 3:
输入:root = [1,2], p = 1, q = 2
输出:1
提示:
[2, 105]
内。-109 <= Node.val <= 109
Node.val
互不相同
。p != q
p
和 q
均存在于给定的二叉树中。/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == p || root == q || root == nullptr) return root;TreeNode * left = lowestCommonAncestor(root->left, p, q);TreeNode * right = lowestCommonAncestor(root->right, p, q);if (left != nullptr && right != nullptr) return root;if (left == nullptr) return right; return left;}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':if root == p or root == q or root == None:return rootleft = self.lowestCommonAncestor(root.left, p, q);right = self.lowestCommonAncestor(root.right, p, q);if left != None and right != None:return rootif left == None:return right;return left