初一配套应用题及答案
创始人
2025-11-22 10:46:57
0

初一配套应用题及答案

  一、初一数学的教学方法

  1.降低难度,让学生在学习中找到乐趣

  结合专业,教学中按"必需、够用"的原则优化教学内容,淡化严格的数学论证,强化几何说明,重视直观、形象的理解,注重实践应用。中职学校数学教学要树立"实用主义"思想,对数学概念的教学要轻"形式"重"意义",避免使学生陷入枯燥的形式学习中。如,"三角函数"教学,按教材结构先研究任意角三角函数的定义,再研究图象性质及和、差、倍、半角的计算等。我认为这部分教材处理可分成"实用"和"延伸"两部分,对大多数专业和学生而言,学生只要了解三角函数的概念和会解三角形即可。

  2.创设有效的数学情境,让生认为数学"来源于生活"

  奥苏伯尔的有意义学习理论认为,创设一定的数学情境,能够使学生对知识本身发生兴趣,进而产生认识需要,产生一种要学习的倾向,从而能够激发学生的学习动机。当然,数学情境的创设,取决于数学教师的素质,教师素质的高低决定了情境创设的好坏。第一,需要教师熟悉教学内容,把握教学的具体要求和新旧知识间的内在联系。第二,需要教师充分了解学生已有的智力发展和认知结构状况。并在此基础上,按照数学知识本身的内在逻辑和思维规律,由简到繁、由易到难地安排学习内容。

  3.在探究性教学的每一节课中,教师要根据课堂内容,寻找与教学内容密切相关的、可以激发学生兴趣的数学材料,创设出若干数学问题情境,用学生喜闻乐见的方式,生动活泼、富有趣味性的语言讲出来,让学生发现问题并怀着强烈的好奇心和求知欲参与其中。

  二、初一配套应用题及答案(精选50题)

  初中一年级学生刚刚进入少年期,机械记忆力较强,分析能力仍然较差。鉴此,要提高初一年级数学应用题教学效果,务必要提高学生的分析能力。下面由小编为您整理出的初一应用题及答案(精选50题),一起来看看吧。

  初一配套应用题及答案1

  1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完?

  设:还要运x次才能完

  29.5-3*4=2.5x

  17.5=2.5x

  x=7

  还要运7次才能完

  2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

  设:它的高是x米

  x(7+11)=90*2

  18x=180

  x=10

  它的高是10米

  3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

  设:这9天中平均每天生产x个

  9x+908=5408

  9x=4500

  x=500

  这9天中平均每天生产500个

  4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?

  设:乙每小时行x千米

  3(45+x)+17=272

  3(45+x)=255

  45+x=85

  x=40

  乙每小时行40千米

  5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

  设:平均成绩是x分

  40*87.1+42x=85*82

  3484+42x=6970

  42x=3486

  x=83

  平均成绩是83分

  6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

  设:平均每箱x盒

  10x=250+550

  10x=800

  x=80

  平均每箱80盒

  7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人?

  设:平均每组x人

  5x+80=200

  5x=160

  x=32

  平均每组32人

  8、食堂运来150千克大米,比运来的面粉的`3倍少30千克.食堂运来面粉多少千克?

  设:食堂运来面粉x千克

  3x-30=150

  3x=180

  x=60

  食堂运来面粉60千克

  9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?

  设:平均每行梨树有x棵

  6x-52=20

  6x=72

  x=12

  平均每行梨树有12棵

  10、一块三角形地的面积是840平方米,底是140米,高是多少米?

  设:高是x米

  140x=840*2

  140x=1680

  x=12

  高是12米

  11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米?

  设:每件儿童衣服用布x米

  16x+20*2.4=72

  16x=72-48

  16x=24

  x=1.5

  每件儿童衣服用布1.5米

  12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

  设:女儿今年x岁

  30=6(x-3)

  6x-18=30

  6x=48

  x=8

  女儿今年8岁

  13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

  设:需要x时间

  50x=40x+80

  10x=80

  x=8

  需要8时间

  14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

  设:苹果为x

  3x+2(x-0.5)=15

  5x=16

  x=3.2

  苹果:3.2

  梨:2.7

  15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?

  设:甲x小时到达中点

  50x=40(x+1)

  10x=40

  x=4

  甲4小时到达中点

  16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.

  设:乙的速度x

  2(x+15)+4x=60

  2x+30+4x=60

  6x=30

  x=5

  乙的速度5

  17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?

  设:原来两根绳子各长x米

  3(x-15)+3=x

  3x-45+3=x

  2x=42

  x=21

  原来两根绳子各长21米

  18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

  设:每只篮球x

  7x+10x/3=248

  21x+10x=744

  31x=744

  x=24

  每只篮球:24

  每只足球:8

  19.小明家中的一盏灯坏了,现想在两种灯里选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同.节能灯售价高,但是较省电;白灯售价低,但是用电多.如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什么来选择买哪一种灯比较合理?

  参考资料:

  (1)1千瓦=1000瓦

  (2)总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)

  (3)1度电=1千瓦连续使用1小时

  假设目前电价为1度电要3.5元

  如果每只电灯泡功率为21瓦,每小时用电则为0.021度.

  每小时电费=3.5元X0.021=0.0735元

  每天电费=0.0735X24小时=1.764元

  每月电费=1.764X30天=52.92元

  这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策.

  解答过程:

  设使用时间为A小时,

  1*0.011*A+60=1*0.06*A+3

  这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的.解方程.

  A=1163.265小时

  也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的.

  那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济.

  20.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

  设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5

  0.57x-79.8+60.2=0.5x

  0.07x=19.6

  x=280

  再分步算:140*0.43=60.2

  (280-140)*0.57=79.8

  79.8+60.2=140

  初一配套应用题及答案2

  1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

  解:1/20+1/16=9/80表示甲乙的工作效率

  9/80×5=45/80表示5小时后进水量

  1-45/80=35/80表示还要的进水量

  35/80÷(9/80-1/10)=35表示还要35小时注满

  答:5小时后还要35小时就能将水池注满。

  2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

  解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

  又因为,要求"两队合作的天数尽可能少",所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能"两队合作的天数尽可能少"。

  设合作时间为x天,则甲独做时间为(16-x)天

  1/20*(16-x)+7/100*x=1,x=10

  答:甲乙最短合作10天

  3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

  解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

  根据"甲、丙合做2小时后,余下的乙还需做6小时完成"可知甲做2小时、乙做6小时、丙做2小时一共的.工作量为1。

  所以1-9/10=1/10表示乙做6-4=2小时的工作量。

  1/10÷2=1/20表示乙的工作效率。

  1÷1/20=20小时表示乙单独完成需要20小时。

  答:乙单独完成需要20小时。

  4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

  解:由题意可知1/甲+1/乙+1/甲+1/乙+......+1/甲=1

  1/乙+1/甲+1/乙+1/甲+......+1/乙+1/甲×0.5=1

  (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

  1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)

  得到1/甲=1/乙×2,又因为1/乙=1/17

  所以1/甲=2/17,甲等于17÷2=8.5天

  5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

  答案120÷(4/5÷2)=300个

  可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

  6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?

  答案1÷(1/6-1/10)=15棵

  7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

  答案45分钟。

  1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。

  1/12*(18-12)=1/12*6=1/2表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

  1/2÷18=1/36表示甲每分钟进水

  最后就是1÷(1/20-1/36)=45分钟。

  8.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

  设:增加x%

  90%*(1+x%)=1

  解得:x=1/9

  所以,销售量要比按原价销售时增加11.11%

  9.某大商场家电部送货人员与销售人员人数之比为1:8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员?

  设送货人员有X人,则销售人员为8X人.

  (X+22)/(8X-22)=2/5

  5*(X+22)=2*(8X-22)

  5X+110=16X-44

  11X=154

  X=14

  8X=8*14=112

  这个商场家电部原来有14名送货人员,112名销售人员。

  10.b处的兔子和a处的狗相距56米。兔子从b处逃跑,狗同时从a处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?

  答案:狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米。

  初一配套应用题及答案3

  1.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度.

  l+300=30v

  300-l=10v

  v=15m/s

  l=150m

  答:车长150m,速度15m/s.

  2、某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山.已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离.

  设甲的速度为x,乙的速度为y

  80x+80y=400

  80y-80x=400

  所以x=0y=5(这道题时间为80秒与实际不符)

  3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y

  那么[x-4*(18-x-y)/60]/4=(18-y)/60

  y/4=(18-x)/60+(18-x-y)/60

  所以x=2y=2

  A点距离北山为2km

  3.牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜负平各几场?

  设胜x场,负y场,则平11-x-y场

  x=4y

  3x+11-x-y=25

  x=8

  y=2

  胜8场,负2场,平1场

  4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?

  设原来有x组.所以人数是8x

  (x-2)12=8x

  x=6

  共有48人.

  5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?

  设飞机的平均速度为xkm/h,风速为ykm/h.

  由题意可知,从A地到B地逆风,从B地到A地顺风.可列方程:

  x+y=4/5.2

  x-y=4/6.5

  解得:x=9/13,y=1/13

  6.一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?

  设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:

  (1/3)x/12=(1/3)x/[12*(5/4)]+1

  化简得:

  (5/3)x=(4/3)x+60

  (1/3)x=60

  x=180

  所以麦地有180公顷.

  7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答

  设每分为X

  2X+5X=14000

  7X=14000

  X=2000

  2X=4000

  5X=10000

  所以甲分到4000元,乙分到10000元

  8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价。

  请列方程解应用题

  设票价为x元

  x+(35-20)*1.5%x=1323x=1080

  (应该是每千克按1.5%收费,不是15%)不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.

  9.商店在销售二种售价一样的'商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?

  设这两件商品售价都为x元

  因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x

  售价为,x+x=2x

  32/15x>2x即进价>售价

  所以亏损

  10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度.

  l+300=30v

  300-l=10v

  v=15m/s

  l=150m

  答:车长150m,速度15m/s.

  初一配套应用题及答案4

  1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

  解:题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

  由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

  答:两队合做需要6天完成。

  2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

  解:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?

  24÷[1÷(1/6+1/8)]=7(个)

  (2)这批零件共有多少个?

  7÷(1/6-1/8)=168(个)

  答:这批零件共有168个。

  解二上面这道题还可以用另一种方法计算:

  两人合做,完成任务时甲乙的工作量之比为:1/6∶1/8=4∶3

  由此可知,甲比乙多完成总工作量:4-3/4+3=1/7

  所以,这批零件共有24÷1/7=168(个)

  3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的.由乙丙二人合做,还需几小时才能完成?

  解:必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是:60÷12=560÷10=660÷15=4。

  因此余下的工作量由乙丙合做还需要:(60-5×2)÷(6+4)=5(小时)

  答:还需要5小时才能完成。

  4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

  解:注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知:每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1即一个排水管与每个进水管的工作效率相同。由此可知:一池水的总工作量为:1×4×5-1×5=15,又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)

  答:至少需要9个进水管。

  5、某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?

  解:设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了1-(1+10%)×(1-10%)=1%。

  答:二月份比原价下降了1%。

  6、某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?

  解:要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为52÷80%÷(1+30%)=50(元),可以看出该店是盈利的,盈利率为(52-50)÷50=4%。

  答:该店是盈利的,盈利率是4%。

  7、成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?

  解:问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的`作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即:0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)

  剩下的作业本每册盈利:7.20÷〔1200×(1-80%)〕=0.03(元)

  又可知(0.25+0.03)÷〔0.25×(1+40%)〕=80%

  答:剩下的作业本是按原定价的八折出售的。

  8、某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。

  解:设乙店的进货价为1,则甲店的进货价为:1-10%=0.9

  甲店定价为:0.9×(1+30%)=1.17

  乙店定价为:1×(1+20%)=1.20

  由此可得乙店进货价为:6÷(1.20-1.17)=200(元)

  乙店定价为:200×1.2=240(元)

  答:乙店的定价是240元。

  9、某车间工有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需要A种工件3件,B种工件两件才能配套。该车间应如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?

  解:设A工件分配X人,B工件分配(75-X)人。

  15X÷3=(75-X)×20÷2

  解得:X=50

  B工件分配人数:75-50=25(人)。

  答:分配50人做A工件、25人做B工件,两种工件恰好配套。

  10、若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?

  设:有x间宿舍每间住4人,则有20人无法安排所以有4x+20人

  每间住8人,则最后一间不空也不满所以x-1间住8人,

  最后一间大于小于8

  所以0<(4x+20)-8(x-1)<8

  0<-4x+28<8乘以-1,

  不等号改向-8<4x-28<0

  加上2820<4x<28除以45

  x是整数所以x=64x+20=44

  所以有6间宿舍,44人。

相关内容

热门资讯

大学英语四级满分作文范文欣赏   第一篇:  作文题目:  Intelligence-Nature or Nurture  1) ...
常用英语问候语大全   How are you?你好吗?  Nice to meet you.很高兴见到你,常用英语问候...
我的旅行计划 My trav... 我的旅行计划 My travel plan英语作文 篇一My Travel PlanI have a...
531行动计划心得体会 531行动计划心得体会  日子如同白驹过隙,很快就要开展新的工作了,该好好计划一下接下来的工作了!那...
雨水的谚语 有关雨水的谚语(精选100句)  在日常的学习、工作、生活中,大家都对那些朗朗上口的谚语很是熟悉吧,...
激发学生作文兴趣的方法 激发学生作文兴趣的方法  作文教学历来是语文教学的半壁河山,在作文教学中,培养学生自主学习能力,让合...
“薰香自烧”的意思 “薰香自烧”的意思 成语拼音: [xūn xiāng zì shāo] ...
吴承恩的名言名句 关于吴承恩的名言名句  1、一窍通,百窍通。  2、避色如避仇,避风如避箭。  3、独有一枝红,秋晚...
“自命清高”的意思 “自命清高”的意思 成语拼音: [zì mìng qīng gāo] ...
游西山村阅读答案淮安 游西山村阅读答案淮安  《游山西村》是南宋著名诗人陆游创作的一首七言律诗,是作者少有的基调比较明快的...