初中数学知识点总结
创始人
2025-10-08 19:02:20
0

初中数学知识点总结

  总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,通过它可以正确认识以往学习和工作中的优缺点,因此我们要做好归纳,写好总结。总结一般是怎么写的呢?以下是小编精心整理的初中数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

  初中数学知识点总结1

  一元一次方程定义

  通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

  一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

  即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

  一元一次方程的五个核心问题

  一、什么是等式?1+1=1是等式吗?

  表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

  一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

  等式与代数式不同,等式中含有等号,代数式中不含等号。

  等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

  二、什么是方程,什么是一元一次方程?

  含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

  只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

  凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

  三、等式有什么牛掰的基本性质吗?

  将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

  移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

  去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

  四、等式一定是方程吗?方程一定是等式吗?

  等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

  五、"解方程"与"方程的解"是一回事儿吗?

  方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

  初中数学知识点总结2

  一、平移变换:

  1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

  2、性质:(1)平移前后图形全等;

  (2)对应点连线平行或在同一直线上且相等。

  3、平移的作图步骤和方法:

  (1)分清题目要求,确定平移的方向和平移的距离;

  (2)分析所作的图形,找出构成图形的关健点;

  (3)沿一定的方向,按一定的距离平移各个关健点;

  (4)连接所作的各个关键点,并标上相应的字母;

  (5)写出结论。

  二、旋转变换:

  1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  说明:

  (1)图形的旋转是由旋转中心和旋转的角度所决定的;

  (2)旋转过程中旋转中心始终保持不动。

  (3)旋转过程中旋转的方向是相同的。

  (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

  2、性质:

  (1)对应点到旋转中心的距离相等;

  (2)对应点与旋转中心所连线段的夹角等于旋转角;

  (3)旋转前、后的图形全等。

  3、旋转作图的步骤和方法:

  (1)确定旋转中心及旋转方向、旋转角;

  (2)找出图形的关键点;

  (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

  (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

  说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

  常见考法

  (1)把平移旋转结合起来证明三角形全等;

  (2)利用平移变换与旋转变换的性质,设计一些题目。

  误区提醒

  (1)弄反了坐标平移的上加下减,左减右加的规律;

  (2)平移与旋转的性质没有掌握。

  初中数学知识点总结3

  1、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

  2、几种几何图形的重心:

  ⑴线段的重心就是线段的中点;

  ⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点;

  ⑶三角形的三条中线交于一点,这一点就是三角形的重心;

  ⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

  提示:⑴无论几何图形的形状如何,重心都有且只有一个;

  ⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

  3、常见图形重心的性质:

  ⑴线段的重心把线段分为两等份;

  ⑵平行四边形的重心把对角线分为两等份;

  ⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

  上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。

  初中数学知识点总结4

  1.有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①②

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0?a+b=0?a、b互为相反数。

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a—b)n=—(b—a)n,当n为正偶数时:(—a)n=an或(a—b)n=(b—a)n。

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18.混合运算法则:先乘方,后乘除,最后加减。

  本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。

  体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

  初中数学知识点总结5

  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形

  柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  正有理数整数

  有理数零有理数

  负有理数分数

  2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

  正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

  6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  7、有理数的运算:

  (1)五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  (2)有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  (3)运算律

  加法交换律加法结合律

  乘法交换律乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

  第三章整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  ※代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

  2、整式:单项式和多项式统称为整式。

  ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

  ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章基本平面图形

  2、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  3、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM=BM=1/2AB(或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

  12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的'图形叫做扇形。顶点在圆心的角叫做圆心角。

  第五章一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  (2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

  6、解一元一次方程的一般步骤:

  (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

  第六章数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  初中数学知识点总结6

  一、角的定义

  “静态”概念:有公共端点的两条射线组成的图形叫做角。

  “动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

  如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

  二、角的换算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、补角的概念和性质:

  概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

  如果两个角的和是一个直角,那么这两个角叫做互为余角。

  说明:互补、互余是指两个角的数量关系,没有位置关系。

  性质:同角(或等角)的余角相等;

  同角(或等角)的补角相等。

  四、角的比较方法:

  角的大小比较,有两种方法:

  (1)度量法(利用量角器);

  (2)叠合法(利用圆规和直尺)。

  五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

  常见考法

  (1)考查与时钟有关的问题;(2)角的计算与度量。

  误区提醒

  角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

  【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是()

  【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度,本题选C.

  初中数学知识点总结7

  1、正数和负数的有关概念

  (1)正数:比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

  (3)一个数同零相加,仍得这个数.

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:减去一个数,等于加上这个数的相反数。

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

  初中数学知识点总结8

  其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。

  角的静态定义

  具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号

  角的符号:∠

  角的种类

  在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  角周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  特殊角

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。

  内错角:互相平行的两条直线直线,被第三条直线所截,如果两个角都在两条直线的

  内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5

  同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6

  同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外错角:两条直线被第三条直线所截,构成了八个角。如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。

  同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7

  终边相同的角:具有共同始边和终边的角叫终边相同的角。与角a终边相同的角属于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  初中数学知识点总结9

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

  4.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度·时间;

  (2)工程问题:工作量=工效·工时;

  (3)比率问题:部分=全体·比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

  (5)商品价格问题:售价=定价·折·,利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

  S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

  本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

  初中数学知识点总结10

  1、一元一次方程根的情况

  △=b2-4ac

  当△>0时,一元二次方程有2个不相等的实数根;

  当△=0时,一元二次方程有2个相同的实数根;

  当△<0时,一元二次方程没有实数根

  2、平行四边形的性质:

  ①两组对边分别平行的四边形叫做平行四边形。

  ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

  ③平行四边形的对边/对角相等。

  ④平行四边形的对角线互相平分。

  菱形:①一组邻边相等的平行四边形是菱形

  ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

  ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

  矩形与正方形:

  ①有一个内角是直角的平行四边形叫做矩形。

  ②矩形的对角线相等,四个角都是直角。

  ③对角线相等的平行四边形是矩形。

  ④正方形具有平行四边形,矩形,菱形的一切性质。

  ⑤一组邻边相等的矩形是正方形。

  多边形:

  ①N边形的内角和等于(N-2)180度

  ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

  平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

  加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

  初中数学知识点总结11

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  初中数学知识点总结12

  ①直线和圆无公共点,称相离。AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

  初中数学知识点总结13

  动点与函数图象问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

  图形运动与函数图象问题常见的三种类型:

  1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  动点问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

  2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

  3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

  总结反思:

  本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

  解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.

  解答函数的图象问题一般遵循的步骤:

  1、根据自变量的取值范围对函数进行分段.

  2、求出每段的解析式.

  3、由每段的解析式确定每段图象的形状.

  对于用图象描述分段函数的实际问题,要抓住以下几点:

  1、自变量变化而函数值不变化的图象用水平线段表示.

  2、自变量变化函数值也变化的增减变化情况.

  3、函数图象的最低点和最高点.

  初中数学知识点总结14

  1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

  2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  (2)角平分线上的点到角两边距离相等。

  (3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

  (4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  (5)轴对称图形上对应线段相等、对应角相等。

  3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

  5.等腰三角形的判定:等角对等边。

  6.等边三角形角的特点:三个内角相等,等于60°,

  7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

  有一个角是60°的等腰三角形是等边三角形

  有两个角是60°的三角形是等边三角形。

  8.直角三角形中,30°角所对的直角边等于斜边的一半。

  9.直角三角形斜边上的中线等于斜边的一半。

  本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

  初中数学知识点总结15

  一、数与代数

  a、数与式:

  1、有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

  ②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

  立方根:

  ①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:

  ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:

  ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn除法一样。

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:

  ①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  初中数学知识点:直线的位置与常数的关系

  ①k>0则直线的倾斜角为锐角

  ②k<0则直线的倾斜角为钝角

  ③图像越陡,|k|越大

  ④b>0直线与y轴的交点在x轴的上方

  ⑤b<0直线与y轴的交点在x轴的下方

相关内容

热门资讯

大学英语四级满分作文范文欣赏   第一篇:  作文题目:  Intelligence-Nature or Nurture  1) ...
常用英语问候语大全   How are you?你好吗?  Nice to meet you.很高兴见到你,常用英语问候...
我的旅行计划 My trav... 我的旅行计划 My travel plan英语作文 篇一My Travel PlanI have a...
531行动计划心得体会 531行动计划心得体会  日子如同白驹过隙,很快就要开展新的工作了,该好好计划一下接下来的工作了!那...
雨水的谚语 有关雨水的谚语(精选100句)  在日常的学习、工作、生活中,大家都对那些朗朗上口的谚语很是熟悉吧,...
激发学生作文兴趣的方法 激发学生作文兴趣的方法  作文教学历来是语文教学的半壁河山,在作文教学中,培养学生自主学习能力,让合...
“薰香自烧”的意思 “薰香自烧”的意思 成语拼音: [xūn xiāng zì shāo] ...
吴承恩的名言名句 关于吴承恩的名言名句  1、一窍通,百窍通。  2、避色如避仇,避风如避箭。  3、独有一枝红,秋晚...
“自命清高”的意思 “自命清高”的意思 成语拼音: [zì mìng qīng gāo] ...
游西山村阅读答案淮安 游西山村阅读答案淮安  《游山西村》是南宋著名诗人陆游创作的一首七言律诗,是作者少有的基调比较明快的...