YOLO系列算法改进方法 | 目录一览表
创始人
2024-02-29 19:30:09
0

文章目录

  • YOLO系列算法改进方法 | 目录一览表
    • 一、注意力机制添加方法
    • 二、网络轻量化方法
    • 三、优化损失函数
    • 四、非极大值抑制
    • 五、“Transformer+CNN”结构
    • 六、特征融合方式改进
    • 七、优化锚框生成


💡魔改YOLO系列算法,助力涨点,助力科研。通过添加注意力机制SE/CBAM/CoordAtt/ECA /SimAM/CrissCrossAttention/ SKAttention/GAMAttention/S2-MLPv2/NAM等;网络轻量化方法通过更换主干特征提取网络为MobileNetV3/ShuffleNetV2/EfficientNetv2/Ghostnet/深度可分离卷积/PP-LCNet/mobileone/Ghostnetv2等;优化原yolo算法损失函数为EIoU/SIoU/Alpha-IoU等,助力检测涨点;优化非极大值抑制算法为Soft-nms/DIoU NMS等;构建“Transformer+CNN”结构拟补原卷积网络缺乏长距离建模能力,融入Bottleneck/EfficientFormer/Swin Transformer/Swin Transformer v2.0等,助力涨点;改进特征融合方式为BIFPN/ASFF等,强化不同尺度融合能力;优化锚框生成,改为K-Means++;添加小目标检测层等方法。


YOLO系列算法改进方法 | 目录一览表

💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入


一、注意力机制添加方法

一般解决问题为:图像待测目标与背景相似,目标难以辨识的检测难点
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制

二、网络轻量化方法

一般解决问题为:轻量化网络,适应应用部署
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️40. 轻量化mobileone主干网络引入

三、优化损失函数

一般解决问题为:原损失函数的缺陷不足
💡🎈☁️7. 损失函数改进
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数

四、非极大值抑制

一般解决问题为:同类别目标相互重叠导致错漏检问题
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS

五、“Transformer+CNN”结构

一般解决问题为:拟补全卷积网络缺乏长距离建模能力
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️29. 引入Swin Transformer v2.0版本

六、特征融合方式改进

一般解决问题为:目标尺度变化多样的问题
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络

七、优化锚框生成

一般解决问题为:原K-Means算法缺陷
💡🎈☁️9. 锚框K-Means算法改进K-Means++

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...