【In-Context Learning】Meta-learning via Language Model In-context Tuning
创始人
2024-02-24 20:21:47
0

In-Context Learning是最近比较火热的方向,其主要针对超大规模模型(例如1750B参数量的GPT-3模型),在只提供少量标注样本作为提示的前提下,即可以实现很惊艳的效果。本文将元学习引入到In-Context Learning中。
论文PDF:https://doi.org/10.18653/v1/2022.acl-long.53

一、动机

本文提出in-context tuning(ICT)用于few-shot learning

  • 目前,向语言模型通过prompting可以在小样本场景下得到很大的成功。例如GPT-3

For example, to coax the model into performing sentiment classification on the target input “This movie is a waste of time”, we prompt the LM with the sequence “I like the movie! Positive review? Yes. Horrible Movie! Positive review? No. This movie is a waste of time. Positive review? ___”, and predict “positive” if the next word is more likely to be “Yes” rather than “No”.

  • 然而原始的语言模型在预训练时并没有针对in-context进行优化

raw LMs are not optimized for in-context FSL during pre-training, and exhibit undesirable behavior when used for FSL

  • 先前工作发现prompting会过度受到(oversensitive)样本选取以及instruction本身影响

Previous work has also shown that prompting raw LMs is often oversensitive to example choices and instruction wording

二、方法

在训练(fine-tuning)阶段,给定一系列的训练task,每一个task都有相应的instruction,以及该task对应的少量样本(输入/输出对)。在测试阶段,给定一个新的unseen task,以及该task对应的instruction和少量样本(输入/输出对),旨在让模型能够对测试样本预测其类别。如下图,给定一个情感分析task:
在这里插入图片描述

在训练时,直接对instruction ITI_TIT​、若干少量标注数据 STS_TST​ 以及target样本 xtargetTx_{target}^TxtargetT​ 进行拼接,并基于in-context learning训练目标进行优化,预测对应类别 ytargetTy_{target}^TytargetT​:

在这里插入图片描述

三、实验

(1)baseline模型
Raw In-context Learning

与in-context tuning一样,给定unseen task的instruction、少量标注样本(输入/输出对)和样本输入,直接预测样本的输出。此时没有fine-tuning过程,属于zero-shot learning场景。

Instruction-tuning + Fine-tuning

给定若干种类的task,基于instruction以及样本的输入,用于训练。在fine-tuning阶段,给定unseen task的instruction以及K个样本,进行fine-tuning。

Instruction-tuning

此时只有instruction和样本的输入,属于zero-shot learning场景。

MAML

给定若干task的instruction和一个样本输入,用于训练并预测目标。其与传统的MAML一样,只是训练目标变为instruction tuning

在这里插入图片描述

  • In-context tuning比原始的in-context learning效果好,说明直接对in-context learning obective进行训练是有效的;
  • MAML的效果超越了instruction-tuning,说明MAML是可以充分利用few-shot example来实现task adaptation;而本文提出的方法超越了MAML,则说明in-context tuning可以充分利用预训练语言模型的归纳偏置(inductive bias)

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...