算法基础---数据结构
创始人
2025-05-30 16:49:43
0


文章目录

  • 链表
    • 单链表
    • 双链表
  • 栈与队列
    • 队列
    • 循环队列
    • 单调栈
    • 单调队列
  • KMP
  • Tire树
  • 并查集
  • 哈希表
    • 拉链法
    • 开放地址法
    • 字符哈希
  • 算法竞赛中C++常用容器

一、链表

利用数组来进行模拟链表效率比较高。

1.单链表

// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;// 初始化
void init()
{head = -1;idx = 0;
}// 在链表头插入一个数a
void insert(int a)
{e[idx] = a, ne[idx] = head, head = idx ++ ;
}// 将头结点删除,需要保证头结点存在
void remove()
{head = ne[head];
}

2.双链表

// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;// 初始化
void init()
{//0是左端点,1是右端点r[0] = 1, l[1] = 0;idx = 2;
}// 在节点a的右边插入一个数x
void insert(int a, int x)
{e[idx] = x;l[idx] = a, r[idx] = r[a];l[r[a]] = idx, r[a] = idx ++ ;
}// 删除节点a
void remove(int a)
{l[r[a]] = l[a];r[l[a]] = r[a];
}

二、栈和队列

1.栈

定义:栈(Stack)是一个有序线性表,只能在表的一端(称为栈顶,top)执行插入和删除操作。最后插入的元素将第一个被删除,所以栈也称为后进先出(Last In First Out,LIFO)或先进后出(First In Last Out)线性表;

两个改变栈的操作都有专用名称。一个称为入栈(push),表示在栈中插入一个元素;另一个称为出栈(pop),表示从栈中删除一个元素。试图对一个空栈执行栈操作称为下溢(underflow);试图对一个满栈执行栈操作称为溢出(overflow)。通常,溢出和下溢均认为是异常;

// tt表示栈顶
int stk[N], tt = 0;// 向栈顶插入一个数
stk[ ++ tt] = x;// 从栈顶弹出一个数
tt -- ;// 栈顶的值
stk[tt];// 判断栈是否为空,如果 tt > 0,则表示不为空
if (tt > 0)
{}

2.队列

定义:队列是一种只能在一端插入(队尾),在另一端删除(队首)的有序线性表。队列中第一个插入的元素也是第一个被删除的元素,所以队列是一种先进先出(FIFO,First In First Out)或后进后出(LiLO,Last In Last Out)线性表;

与栈类似,两个改变队列的操作各有专用名称;在队列中插入一个元素,称为入队(EnQueue),从队列中删除一个元素,称为出队(DeQueue);试图对一个空队列执行出队操作称为下溢(underflow),试图对一个满队列执行入队操作称为溢出(overflow);通常认为溢出和下溢是异常。

// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;// 向队尾插入一个数
q[ ++ tt] = x;// 从队头弹出一个数
hh ++ ;// 队头的值
q[hh];// 判断队列是否为空,如果 hh <= tt,则表示不为空
if (hh <= tt)
{}

3.循环队列

// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;// 队头的值
q[hh];// 判断队列是否为空,如果hh != tt,则表示不为空
if (hh != tt)
{}

4.单调栈

单调栈 :在栈的 先进后出 基础之上额外添加一个特性:从栈顶到栈底的元素是严格递增或者是递减。

具体进栈过程如下:

  • 对于单调递增栈,若当前进栈元素为 e,从栈顶开始遍历元素,把小于 e 或者等于 e 的元素弹出栈,直接遇到一个大于 e 的元素或者栈为空为止,然后再把 e 压入栈中。

  • 对于单调递减栈,则每次弹出的是大于 e 或者等于 e 的元素。

//常见模型:找出每个数左边离它最近的比它大/小的数
int tt = 0;
for (int i = 1; i <= n; i ++ )
{while (tt && check(stk[tt], i)) tt -- ;stk[ ++ tt] = i;
}

5.单调队列

单调队列 就是能够完美支持下面三种操作的一种容器:
(1)通过 O(1) 的时间,获取容器中元素的最大值。
(2)通过 O(1) 的时间,删除元素。
(3)通过 O(1) 的时间,插入元素。

//常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{while (hh <= tt && check_out(q[hh])) hh ++ ;  // 判断队头是否滑出窗口while (hh <= tt && check(q[tt], i)) tt -- ;q[ ++ tt] = i;
}

三、KMP

kmp算法思想

        我们首先用一个图来描述kmp算法的思想。在字符串O中寻找f,当匹配到位置i时两个字符串不相等,这时我们需要将字符串f向前移动。常规方法是每次向前移动一位,但是它没有考虑前i-1位已经比较过这个事实,所以效率不高。事实上,如果我们提前计算某些信息,就有可能一次前移多位。假设我们根据已经获得的信息知道可以前移k位,我们分析移位前后的f有什么特点。我们可以得到如下的结论:

  • A段字符串是f的一个前缀。

  • B段字符串是f的一个后缀。

  • A段字符串和B段字符串相等。

    所以前移k位之后,可以继续比较位置i的前提是f的前i-1个位置满足:长度为i-k-1的前缀A和后缀B相同。只有这样,我们才可以前移k位后从新的位置继续比较。

        所以kmp算法的核心即是计算字符串f每一个位置之前的字符串的前缀和后缀公共部分的最大长度(不包括字符串本身,否则最大长度始终是字符串本身)。获得f每一个位置的最大公共长度之后,就可以利用该最大公共长度快速和字符串O比较。当每次比较到两个字符串的字符不同时,我们就可以根据最大公共长度将字符串f向前移动(已匹配长度-最大公共长度)位,接着继续比较下一个位置。事实上,字符串f的前移只是概念上的前移,只要我们在比较的时候从最大公共长度之后比较f和O即可达到字符串f前移的目的。

next数组计算

            理解了kmp算法的基本原理,下一步就是要获得字符串f每一个位置的最大公共长度。这个最大公共长度在算法导论里面被记为next数组。在这里要注意一点,next数组表示的是长度,下标从1开始;但是在遍历原字符串时,下标还是从0开始。假设我们现在已经求得next[1]、next[2]、……next[i],分别表示长度为1到i的字符串的前缀和后缀最大公共长度,现在要求next[i+1]。由上图我们可以看到,如果位置i和位置next[i]处的两个字符相同(下标从零开始),则next[i+1]等于next[i]加1。如果两个位置的字符不相同,我们可以将长度为next[i]的字符串继续分割,获得其最大公共长度next[next[i]],然后再和位置i的字符比较。这是因为长度为next[i]前缀和后缀都可以分割成上部的构造,如果位置next[next[i]]和位置i的字符相同,则next[i+1]就等于next[next[i]]加1。如果不相等,就可以继续分割长度为next[next[i]]的字符串,直到字符串长度为0为止。由此我们可以写出求next数组的代码:

// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{while (j && p[i] != p[j + 1]) j = ne[j];if (p[i] == p[j + 1]) j ++ ;ne[i] = j;
}// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{while (j && s[i] != p[j + 1]) j = ne[j];if (s[i] == p[j + 1]) j ++ ;if (j == m){j = ne[j];// 匹配成功后的逻辑}
}

四、Tire树

字典树:(Trie树、前缀树)是一种用于快速检索的多叉树结构。字典树把字符串看成字符序列,根据字符串中字符序列的先后顺序构造从上到下的树结构,树结构中的每一条边都对应着一个字符。字典树上存储的字符串被视为从根节点到某个节点之间的一条路径,并在终点节点上做个标记"该节点对应词语的结尾"。

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量// 插入一个字符串
void insert(char *str)
{int p = 0;for (int i = 0; str[i]; i ++ ){int u = str[i] - 'a';if (!son[p][u]) son[p][u] = ++ idx;p = son[p][u];}cnt[p] ++ ;
}// 查询字符串出现的次数
int query(char *str)
{int p = 0;for (int i = 0; str[i]; i ++ ){int u = str[i] - 'a';if (!son[p][u]) return 0;p = son[p][u];}return cnt[p];
}

五、并查集

并查集:用于处理一些不交集(一系列没有重复元素的集合)的合并及查询问题。并查集支持如下操作:

  • 查询:查询某个元素属于哪个集合,通常是返回集合内的一个“代表元素”。这个操作是为了判断两个元素是否在同一个集合之中。

  • 合并:将两个集合合并为一个。

  • 添加:添加一个新集合,其中有一个新元素。添加操作不如查询和合并操作重要,常常被忽略。

(1)朴素并查集:int p[N]; //存储每个点的祖宗节点// 返回x的祖宗节点int find(int x){if (p[x] != x) p[x] = find(p[x]);return p[x];}// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ) p[i] = i;// 合并a和b所在的两个集合:p[find(a)] = find(b);(2)维护size的并查集:int p[N], size[N];//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量// 返回x的祖宗节点int find(int x){if (p[x] != x) p[x] = find(p[x]);return p[x];}// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ){p[i] = i;size[i] = 1;}// 合并a和b所在的两个集合:size[find(b)] += size[find(a)];p[find(a)] = find(b);(3)维护到祖宗节点距离的并查集:int p[N], d[N];//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离// 返回x的祖宗节点int find(int x){if (p[x] != x){int u = find(p[x]);d[x] += d[p[x]];p[x] = u;}return p[x];}// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ){p[i] = i;d[i] = 0;}// 合并a和b所在的两个集合:p[find(a)] = find(b);d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

六、堆

堆是一棵顺序存储的完全二叉树。

其中每个结点的关键字都不大于其孩子结点的关键字,这样的堆称为小根堆。

其中每个结点的关键字都不小于其孩子结点的关键字,这样的堆称为大根堆。

举例来说,对于n个元素的序列{R0, R1, ... , Rn}当且仅当满足下列关系之一时,称之为堆:

(1) Ri <= R2i+1 且 Ri <= R2i+2 (小根堆)

(2) Ri >= R2i+1 且 Ri >= R2i+2 (大根堆)

// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{swap(ph[hp[a]],ph[hp[b]]);swap(hp[a], hp[b]);swap(h[a], h[b]);
}void down(int u)
{int t = u;if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;if (u != t){heap_swap(u, t);down(t);}
}void up(int u)
{while (u / 2 && h[u] < h[u / 2]){heap_swap(u, u / 2);u >>= 1;}
}// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);

七、哈希表

1.拉链法

拉链法:将大小为N的数组中的每个元素指向一条链表,链表中的每个结点都存储了散列值为该元素的索引的键值对。

    //拉链法int h[N], e[N], ne[N], idx;// 向哈希表中插入一个数void insert(int x){int k = (x % N + N) % N;e[idx] = x;ne[idx] = h[k];h[k] = idx ++ ;}// 在哈希表中查询某个数是否存在bool find(int x){int k = (x % N + N) % N;for (int i = h[k]; i != -1; i = ne[i])if (e[i] == x)return true;return false;}

2.开放地址法

开放地址法:开放地址法是另一种(相对于分离链接法)解决散列冲突的方法。适用于装填因子(散列表中元素个数和散列表长度比)较小(小于0.5)的散列表。

    //开放寻址法int h[N];// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置int find(int x){int t = (x % N + N) % N;while (h[t] != null && h[t] != x){t ++ ;if (t == N) t = 0;}return t;}

3.字符串哈希       

 核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果。

typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{h[i] = h[i - 1] * P + str[i];p[i] = p[i - 1] * P;
}// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{return h[r] - h[l - 1] * p[r - l + 1];
}

八、算法竞赛中C++常用容器

vector, 变长数组,倍增的思想size()  返回元素个数empty()  返回是否为空clear()  清空front()/back()push_back()/pop_back()begin()/end()[]支持比较运算,按字典序pairfirst, 第一个元素second, 第二个元素支持比较运算,以first为第一关键字,以second为第二关键字(字典序)string,字符串size()/length()  返回字符串长度empty()clear()substr(起始下标,(子串长度))  返回子串c_str()  返回字符串所在字符数组的起始地址queue, 队列size()empty()push()  向队尾插入一个元素front()  返回队头元素back()  返回队尾元素pop()  弹出队头元素priority_queue, 优先队列,默认是大根堆size()empty()push()  插入一个元素top()  返回堆顶元素pop()  弹出堆顶元素定义成小根堆的方式:priority_queue, greater> q;stack, 栈size()empty()push()  向栈顶插入一个元素top()  返回栈顶元素pop()  弹出栈顶元素deque, 双端队列size()empty()clear()front()/back()push_back()/pop_back()push_front()/pop_front()begin()/end()[]set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列size()empty()clear()begin()/end()++, -- 返回前驱和后继,时间复杂度 O(logn)set/multisetinsert()  插入一个数find()  查找一个数count()  返回某一个数的个数erase()(1) 输入是一个数x,删除所有x   O(k + logn)(2) 输入一个迭代器,删除这个迭代器lower_bound()/upper_bound()lower_bound(x)  返回大于等于x的最小的数的迭代器upper_bound(x)  返回大于x的最小的数的迭代器map/multimapinsert()  插入的数是一个pairerase()  输入的参数是pair或者迭代器find()[]  注意multimap不支持此操作。 时间复杂度是 O(logn)lower_bound()/upper_bound()unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表和上面类似,增删改查的时间复杂度是 O(1)不支持 lower_bound()/upper_bound(), 迭代器的++,--bitset, 圧位bitset<10000> s;~, &, |, ^>>, <<==, !=[]count()  返回有多少个1any()  判断是否至少有一个1none()  判断是否全为0set()  把所有位置成1set(k, v)  将第k位变成vreset()  把所有位变成0flip()  等价于~flip(k) 把第k位取反

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...