排序树(二叉排序树、平衡二叉树)
创始人
2024-06-02 15:11:56
0

文章目录

    • 二叉排序树
      • 二叉排序树
        • 讲解
        • 代码
      • 平衡二叉树
        • 二叉排序树可能的问题
        • 使用平衡二叉树

二叉排序树

二叉排序树

BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。

注意:如果有相同的值,可以将该节点放在左子节点或右子节点

在这里插入图片描述

讲解

  1. 一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树

  2. 二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

    1)删除叶子节点 (比如:2, 5, 9, 12)

    2)删除只有一颗子树的节点 (比如:1)

    3)删除有两颗子树的节点. (比如:7, 3,10 )

代码

package com.atguigu.binarysorttree;public class BinarySortTreeDemo {public static void main(String[] args) {int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};BinarySortTree binarySortTree = new BinarySortTree();//循环的添加结点到二叉排序树for(int i = 0; i< arr.length; i++) {binarySortTree.add(new Node(arr[i]));}//中序遍历二叉排序树System.out.println("中序遍历二叉排序树~");binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12//测试一下删除叶子结点binarySortTree.delNode(12);binarySortTree.delNode(10);binarySortTree.delNode(3);System.out.println("root=" + binarySortTree.getRoot());System.out.println("删除结点后");binarySortTree.infixOrder();}}//创建二叉排序树
class BinarySortTree {private Node root;public Node getRoot() {return root;}//添加结点的方法public void add(Node node) {if(root == null) {root = node;//如果root为空则直接让root指向node} else {root.add(node);}}//中序遍历public void infixOrder() {if(root != null) {root.infixOrder();} else {System.out.println("二叉排序树为空,不能遍历");}}//查找要删除的结点public Node search(int value) {if(root == null) {return null;} else {return root.search(value);}}//查找要删除的父结点public Node searchParent(int value) {if(root == null) {return null;} else {return root.searchParent(value);}}//编写方法: //1. 返回的以node为根结点的二叉排序树的最小结点的值//2. 删除node为根结点的二叉排序树的最小结点public int delRightTreeMin(Node node) {Node target = node;//循环的查找左子节点,就会找到最小值while(target.left != null) {target = target.left;}//这时 target就指向了最小结点//删除最小结点delNode(target.value);return target.value;}//删除结点public void delNode(int value) {if(root == null) {return;}else {//1.需求先去找到要删除的结点targetNodeNode targetNode = search(value);//如果没有找到要删除的结点if(targetNode == null) {return;}//如果我们发现当前这颗二叉排序树只有一个结点if(root.left == null && root.right == null) {root = null;return;}//去找到targetNode的父结点Node parent = searchParent(value);if(targetNode.left == null && targetNode.right == null) {//如果要删除的结点是叶子结点//判断targetNode 是父结点的左子结点,还是右子结点if(parent.left != null && parent.left.value == value) {parent.left = null;} else if (parent.right != null && parent.right.value == value) {parent.right = null;}} else if (targetNode.left != null && targetNode.right != null) {//删除有两颗子树的节点int minVal = delRightTreeMin(targetNode.right);targetNode.value = minVal;} else {// 删除只有一颗子树的结点//如果要删除的结点有左子结点if(targetNode.left != null) {if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.left;} else { //  targetNode 是 parent 的右子结点parent.right = targetNode.left;} } else {root = targetNode.left;}} else { //如果要删除的结点有右子结点 if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.right;} else { //如果 targetNode 是 parent 的右子结点parent.right = targetNode.right;}} else {root = targetNode.right;}}}}}}//创建Node结点
class Node {int value;Node left;Node right;public Node(int value) {this.value = value;}//查找要删除的结点/**** @param value 希望删除的结点的值* @return 如果找到返回该结点,否则返回null*/public Node search(int value) {if(value == this.value) { //找到就是该结点return this;} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找//如果左子结点为空if(this.left  == null) {return null;}return this.left.search(value);} else { //如果查找的值不小于当前结点,向右子树递归查找if(this.right == null) {return null;}return this.right.search(value);}}//查找要删除结点的父结点/**** @param value 要找到的结点的值* @return 返回的是要删除的结点的父结点,如果没有就返回null*/public Node searchParent(int value) {//如果当前结点就是要删除的结点的父结点,就返回if((this.left != null && this.left.value == value) ||(this.right != null && this.right.value == value)) {return this;} else {//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空if(value < this.value && this.left != null) {return this.left.searchParent(value); //向左子树递归查找} else if (value >= this.value && this.right != null) {return this.right.searchParent(value); //向右子树递归查找} else {return null; // 没有找到父结点}}}@Overridepublic String toString() {return "Node [value=" + value + "]";}//添加结点的方法//递归的形式添加结点,注意需要满足二叉排序树的要求public void add(Node node) {if(node == null) {return;}//判断传入的结点的值,和当前子树的根结点的值关系if(node.value < this.value) {//如果当前结点左子结点为nullif(this.left == null) {this.left = node;} else {//递归的向左子树添加this.left.add(node);}} else { //添加的结点的值大于 当前结点的值if(this.right == null) {this.right = node;} else {//递归的向右子树添加this.right.add(node);}}}//中序遍历public void infixOrder() {if(this.left != null) {this.left.infixOrder();}System.out.println(this);if(this.right != null) {this.right.infixOrder();}}}

平衡二叉树

二叉排序树可能的问题

给你一个数列{1,2,3,4,5,6},存在的问题分析:

  1. 左子树全部为空,从形式上看,更像一个单链表
  2. 查询速度明显降低(因为需要依次比较), 不能发挥BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢

在这里插入图片描述

使用平衡二叉树

平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高

具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。

在这里插入图片描述

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...