排序算法(各种排序算法详解)
创始人
2024-06-02 14:54:54
0

文章目录

    • 排序算法
      • 冒泡排序
        • 图解
        • 代码
      • 选择排序
        • 图解
        • 代码
      • 插入排序
        • 图解
        • 代码
      • 希尔排序
        • 图解
        • 代码
      • 快速排序
        • 图解
        • 代码
      • 归并排序
        • 图解
        • 代码
      • 基尔排序
        • 图解
        • 代码
      • 算法复杂度

排序算法

冒泡排序

冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。

图解

如图:

  • 每次排序固定一个最大值
  • 一共进行 size - 1 次大的循环
  • 每一趟排序的次数在逐渐的递减

ps:如果我们发现在某趟排序中,没有发生一次交换, 可以提前结束冒泡排序。(这个就是优化)

在这里插入图片描述

代码

注释的代码是上面图解的每一步过程~

package com.atguigu.sort;import java.util.Arrays;//author qij
public class BubbleSort {public static void main(String[] args) {int arr[] = {3, 9, -1, 10, 20};//测试冒泡排序bubbleSort(arr);System.out.println("排序后");System.out.println(Arrays.toString(arr));/*// 第二趟排序,就是将第二大的数排在倒数第二位for (int j = 0; j < arr.length - 1 - 1 ; j++) {// 如果前面的数比后面的数大,则交换if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}System.out.println("第二趟排序后的数组");System.out.println(Arrays.toString(arr));// 第三趟排序,就是将第三大的数排在倒数第三位for (int j = 0; j < arr.length - 1 - 2; j++) {// 如果前面的数比后面的数大,则交换if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}System.out.println("第三趟排序后的数组");System.out.println(Arrays.toString(arr));// 第四趟排序,就是将第4大的数排在倒数第4位for (int j = 0; j < arr.length - 1 - 3; j++) {// 如果前面的数比后面的数大,则交换if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}System.out.println("第四趟排序后的数组");System.out.println(Arrays.toString(arr)); */}// 将前面额冒泡排序算法,封装成一个方法public static void bubbleSort(int[] arr) {// 冒泡排序 的时间复杂度 O(n^2), 自己写出int temp = 0; // 临时变量boolean flag = false; // 标识变量,表示是否进行过交换for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - 1 - i; j++) {// 如果前面的数比后面的数大,则交换if (arr[j] > arr[j + 1]) {flag = true;temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}//System.out.println("第" + (i + 1) + "趟排序后的数组");//System.out.println(Arrays.toString(arr));if (!flag) { // 在一趟排序中,一次交换都没有发生过break;} else {flag = false; // 重置flag!!!, 进行下次判断}}}}

选择排序

选择式排序也属于内部排序法,是从要排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

图解

在这里插入图片描述

代码

package com.atguigu.sort;import java.util.Arrays;//author qij
public class SelectSort {public static void main(String[] args) {int [] arr = {101, 34, 119, 1, -1, 90, 123};System.out.println("排序前");System.out.println(Arrays.toString(arr));selectSort(arr);System.out.println("排序后");System.out.println(Arrays.toString(arr));}//选择排序public static void selectSort(int[] arr) {//在推导的过程,我们发现了规律,因此,可以使用for来解决//选择排序时间复杂度是 O(n^2)for (int i = 0; i < arr.length - 1; i++) {int minIndex = i;int min = arr[i];for (int j = i + 1; j < arr.length; j++) {if (min > arr[j]) { // 说明假定的最小值,并不是最小min = arr[j]; // 重置minminIndex = j; // 重置minIndex}}// 将最小值,放在arr[0], 即交换if (minIndex != i) {arr[minIndex] = arr[i];arr[i] = min;}}/*//使用逐步推导的方式来,讲解选择排序//原始的数组 :  101, 34, 119, 1//第1轮int minIndex = 0;int min = arr[0];//先找到最小值在哪个数组下标数据for(int j = 0 + 1; j < arr.length; j++) {if (min > arr[j]) { //说明假定的最小值,并不是最小min = arr[j]; //重置minminIndex = j; //重置minIndex}}//将最小值进行交换if(minIndex != 0) {arr[minIndex] = arr[0];arr[0] = min;}System.out.println("第1轮后~~");System.out.println(Arrays.toString(arr));// 1, 34, 119, 101//第2轮minIndex = 1;min = arr[1];for (int j = 1 + 1; j < arr.length; j++) {if (min > arr[j]) { // 说明假定的最小值,并不是最小min = arr[j]; // 重置minminIndex = j; // 重置minIndex}}// 将最小值,放在arr[0], 即交换if(minIndex != 1) {arr[minIndex] = arr[1];arr[1] = min;}System.out.println("第2轮后~~");System.out.println(Arrays.toString(arr));// 1, 34, 119, 101//第3轮minIndex = 2;min = arr[2];for (int j = 2 + 1; j < arr.length; j++) {if (min > arr[j]) { // 说明假定的最小值,并不是最小min = arr[j]; // 重置minminIndex = j; // 重置minIndex}}// 将最小值,放在arr[0], 即交换if (minIndex != 2) {arr[minIndex] = arr[2];arr[2] = min;}System.out.println("第3轮后~~");System.out.println(Arrays.toString(arr));// 1, 34, 101, 119 */}}

插入排序

插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。

图解

在这里插入图片描述

代码

package com.atguigu.sort;import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;//author qij
public class InsertSort {public static void main(String[] args) {int[] arr = {101, 34, 119, 1, -1, 89};insertSort(arr); //调用插入排序算法}//插入排序public static void insertSort(int[] arr) {int insertVal = 0;int insertIndex = 0;//使用for循环来把代码简化for(int i = 1; i < arr.length; i++) {//定义待插入的数insertVal = arr[i];//定义这个数前面的下标insertIndex = i - 1;// 给insertVal 找到插入的位置// 说明// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置// 3. 就需要将 arr[insertIndex] 后移while (insertIndex >= 0 && insertVal < arr[insertIndex]) {arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]insertIndex--;}// 当退出while循环时,说明插入的位置找到, insertIndex + 1//这里我们判断是否需要赋值if(insertIndex + 1 != i) {arr[insertIndex + 1] = insertVal;}System.out.println("第"+i+"轮插入");System.out.println(Arrays.toString(arr));}/*//使用逐步推导的方式来讲解,便利理解//第1轮 {101, 34, 119, 1};  => {34, 101, 119, 1}//{101, 34, 119, 1}; => {101,101,119,1}//定义待插入的数int insertVal = arr[1];int insertIndex = 1 - 1; //即arr[1]的前面这个数的下标//给insertVal 找到插入的位置//说明//1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界//2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置//3. 就需要将 arr[insertIndex] 后移while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]insertIndex--;}//当退出while循环时,说明插入的位置找到, insertIndex + 1//举例:理解不了,我们一会 debugarr[insertIndex + 1] = insertVal;System.out.println("第1轮插入");System.out.println(Arrays.toString(arr));//第2轮insertVal = arr[2];insertIndex = 2 - 1; while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]insertIndex--;}arr[insertIndex + 1] = insertVal;System.out.println("第2轮插入");System.out.println(Arrays.toString(arr));//第3轮insertVal = arr[3];insertIndex = 3 - 1;while (insertIndex >= 0 && insertVal < arr[insertIndex]) {arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]insertIndex--;}arr[insertIndex + 1] = insertVal;System.out.println("第3轮插入");System.out.println(Arrays.toString(arr)); */}}

希尔排序

希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。

图解

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止

在这里插入图片描述

代码

package com.atguigu.sort;import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;public class ShellSort {public static void main(String[] args) {int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };shellSort(arr); //交换式}// 使用逐步推导的方式来编写希尔排序// 希尔排序时, 对有序序列在插入时采用交换法, // 思路(算法) ===> 代码public static void shellSort(int[] arr) {int temp = 0;int count = 0;// 根据前面的逐步分析,使用循环处理for (int gap = arr.length / 2; gap > 0; gap /= 2) {for (int i = gap; i < arr.length; i++) {// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gapfor (int j = i - gap; j >= 0; j -= gap) {// 如果当前元素大于加上步长后的那个元素,说明交换if (arr[j] > arr[j + gap]) {temp = arr[j];arr[j] = arr[j + gap];arr[j + gap] = temp;}}}System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));}/*// 希尔排序的第1轮排序// 因为第1轮排序,是将10个数据分成了 5组for (int i = 5; i < arr.length; i++) {// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5for (int j = i - 5; j >= 0; j -= 5) {// 如果当前元素大于加上步长后的那个元素,说明交换if (arr[j] > arr[j + 5]) {temp = arr[j];arr[j] = arr[j + 5];arr[j + 5] = temp;}}}System.out.println("希尔排序1轮后=" + Arrays.toString(arr));//// 希尔排序的第2轮排序// 因为第2轮排序,是将10个数据分成了 5/2 = 2组for (int i = 2; i < arr.length; i++) {// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5for (int j = i - 2; j >= 0; j -= 2) {// 如果当前元素大于加上步长后的那个元素,说明交换if (arr[j] > arr[j + 2]) {temp = arr[j];arr[j] = arr[j + 2];arr[j + 2] = temp;}}}System.out.println("希尔排序2轮后=" + Arrays.toString(arr));//// 希尔排序的第3轮排序// 因为第3轮排序,是将10个数据分成了 2/2 = 1组for (int i = 1; i < arr.length; i++) {// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5for (int j = i - 1; j >= 0; j -= 1) {// 如果当前元素大于加上步长后的那个元素,说明交换if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}System.out.println("希尔排序3轮后=" + Arrays.toString(arr));//*/}}

快速排序

快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

图解

在这里插入图片描述

代码

package com.atguigu.sort;import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;//author qij
public class QuickSort {public static void main(String[] args) {int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};quickSort(arr, 0, arr.length-1);System.out.println("arr=" + Arrays.toString(arr));}public static void quickSort(int[] arr,int left, int right) {int l = left; //左下标int r = right; //右下标//pivot 中轴值int pivot = arr[(left + right) / 2];int temp = 0; //临时变量,作为交换时使用//while循环的目的是让比pivot 值小放到左边//比pivot 值大放到右边while( l < r) { //在pivot的左边一直找,找到大于等于pivot值,才退出while( arr[l] < pivot) {l += 1;}//在pivot的右边一直找,找到小于等于pivot值,才退出while(arr[r] > pivot) {r -= 1;}//如果l >= r说明pivot 的左右两的值,已经按照左边全部是//小于等于pivot值,右边全部是大于等于pivot值if( l >= r) {break;}//交换temp = arr[l];arr[l] = arr[r];arr[r] = temp;//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移if(arr[l] == pivot) {r -= 1;}//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移if(arr[r] == pivot) {l += 1;}}// 如果 l == r, 必须l++, r--, 否则为出现栈溢出if (l == r) {l += 1;r -= 1;}//向左递归if(left < r) {quickSort(arr, left, r);}//向右递归if(right > l) {quickSort(arr, l, right);}}
}

归并排序

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

图解

把当前数组根据中间值细分,分完之后呈现下面这种状态

在这里插入图片描述

先建立一个临时数组(temp),将两个已经有序的子序列合并成一个有序序列,最终合并替换原数组

在这里插入图片描述

代码

package com.atguigu.sort;import java.util.Arrays;public class MergetSort {public static void main(String[] args) {int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 };int temp[] = new int[arr.length]; //归并排序需要一个额外空间mergeSort(arr, 0, arr.length - 1, temp);System.out.println("归并排序后=" + Arrays.toString(arr));//测试快排的执行速度//创建要给800万个的随机的数组,耗时3s左右,可以说很快了
//    int[] arr = new int[8000000];
//    for (int i = 0; i < 8000000; i++) {
//       arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//    }
//    System.out.println("排序前");
//    Date data1 = new Date();
//    SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//    String date1Str = simpleDateFormat.format(data1);
//    System.out.println("排序前的时间是=" + date1Str);
//
//    int temp[] = new int[arr.length]; //归并排序需要一个额外空间
//        mergeSort(arr, 0, arr.length - 1, temp);
//
//        Date data2 = new Date();
//    String date2Str = simpleDateFormat.format(data2);
//    System.out.println("排序前的时间是=" + date2Str);}/*** 分 + 合方法(主要是递归,先分再合)*/public static void mergeSort(int[] arr, int left, int right, int[] temp) {if(left < right) {int mid = (left + right) / 2; //中间索引//向左递归进行分解、向右递归进行分解mergeSort(arr, left, mid, temp);mergeSort(arr, mid + 1, right, temp);//合并merge(arr, left, mid, right, temp);}}/*** 合并的方法* @param arr 排序的原始数组* @param left 左边有序序列的初始索引* @param mid 中间索引* @param right 右边索引* @param temp 做中转的数组*/public static void merge(int[] arr, int left, int mid, int right, int[] temp) {//初始化i, 左边有序序列的初始索引int i = left;//初始化j, 右边有序序列的初始索引int j = mid + 1;//指向temp数组的当前索引int t = 0;//(一)//先把左右两边(有序)的数据按照规则填充到temp数组//直到左右两边的有序序列,有一边处理完毕为止(不论左边还是右边)while (i <= mid && j <= right) {//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素//即将左边的当前元素,填充到 temp数组 //然后 t++, i++if(arr[i] <= arr[j]) {temp[t] = arr[i];t += 1;i += 1;} else {//反之,右边也一样temp[t] = arr[j];t += 1;j += 1;}}//(二)//因为本来就是有序的数组,把有剩余数据的一边的数据依次全部填充到tempwhile( i <= mid) {temp[t] = arr[i];t += 1;i += 1;    }while( j <= right) {temp[t] = arr[j];t += 1;j += 1;    }//(三)//将temp数组的元素拷贝到arr//注意,并不是每次都拷贝所有t = 0;int tempLeft = left;//第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3//最后一次 tempLeft = 0  right = 7while(tempLeft <= right) { arr[tempLeft] = temp[t];t += 1;tempLeft += 1;}}}

基尔排序

基于桶排序的一种扩展算法

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)。顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用

  • 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
  • 基数排序(Radix Sort)是桶排序的扩展
  • 基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。

图解

将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

代码

注意:

  • 基数排序是对传统桶排序的扩展,速度很快.
  • 基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
package com.atguigu.sort;import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;public class RadixSort {public static void main(String[] args) {int arr[] = { 53, 3, 542, 748, 14, 214};radixSort(arr);// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//    int[] arr = new int[8000000];
//    for (int i = 0; i < 8000000; i++) {
//       arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//    }
//    System.out.println("排序前");
//    Date data1 = new Date();
//    SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//    String date1Str = simpleDateFormat.format(data1);
//    System.out.println("排序前的时间是=" + date1Str);
//
//    radixSort(arr);
//
//    Date data2 = new Date();
//    String date2Str = simpleDateFormat.format(data2);
//    System.out.println("排序前的时间是=" + date2Str);
//
//    System.out.println("基数排序后 " + Arrays.toString(arr));}//基数排序方法public static void radixSort(int[] arr) {//根据前面的推导过程,我们可以得到最终的基数排序代码//得到数组中最大的数的位数int max = arr[0]; //假设第一数就是最大数for(int i = 1; i < arr.length; i++) {if (arr[i] > max) {max = arr[i];}}//得到最大数是几位数//上面例子,748为三位数,所以maxLength = 3int maxLength = (max + "").length();//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组//1. 二维数组包含10个一维数组//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.lengthint[][] bucket = new int[10][arr.length];//为了记录每个桶中存放的实际数据个数//比如:bucketElementCounts[0],记录的就是  bucket[0] 桶的放入数据个数int[] bucketElementCounts = new int[10];//这里我们使用循环将代码处理for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..for(int j = 0; j < arr.length; j++) {//取出每个元素的对应位的值(详细见下面注释代码)int digitOfElement = arr[j] / n % 10;//放入到对应的桶中bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];bucketElementCounts[digitOfElement]++;}//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)int index = 0;//遍历每一桶,并将桶中是数据,放入到原数组for(int k = 0; k < bucketElementCounts.length; k++) {//如果桶中,有数据,我们才放入到原数组if(bucketElementCounts[k] != 0) {//循环该桶即第k个桶(即第k个一维数组), 放入for(int l = 0; l < bucketElementCounts[k]; l++) {//取出元素放入到arrarr[index++] = bucket[k][l];}}//还原每个桶数据个数,方便下次循环使用bucketElementCounts[k] = 0;}System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));}/*//第1轮(针对每个元素的个位进行排序处理)for(int j = 0; j < arr.length; j++) {//取出每个元素的个位的值int digitOfElement = arr[j] / 1 % 10;//放入到对应的桶中bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];bucketElementCounts[digitOfElement]++;}//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)int index = 0;//遍历每一桶,并将桶中是数据,放入到原数组for(int k = 0; k < bucketElementCounts.length; k++) {//如果桶中,有数据,我们才放入到原数组if(bucketElementCounts[k] != 0) {//循环该桶即第k个桶(即第k个一维数组), 放入for(int l = 0; l < bucketElementCounts[k]; l++) {//取出元素放入到arrarr[index++] = bucket[k][l];}}//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!bucketElementCounts[k] = 0;}System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));//==========================================//第2轮(针对每个元素的十位进行排序处理)for (int j = 0; j < arr.length; j++) {// 取出每个元素的十位的值int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4// 放入到对应的桶中bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];bucketElementCounts[digitOfElement]++;}// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)index = 0;// 遍历每一桶,并将桶中是数据,放入到原数组for (int k = 0; k < bucketElementCounts.length; k++) {// 如果桶中,有数据,我们才放入到原数组if (bucketElementCounts[k] != 0) {// 循环该桶即第k个桶(即第k个一维数组), 放入for (int l = 0; l < bucketElementCounts[k]; l++) {// 取出元素放入到arrarr[index++] = bucket[k][l];}}//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!bucketElementCounts[k] = 0;}System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));//第3轮(针对每个元素的百位进行排序处理)for (int j = 0; j < arr.length; j++) {// 取出每个元素的百位的值int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7// 放入到对应的桶中bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];bucketElementCounts[digitOfElement]++;}// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)index = 0;// 遍历每一桶,并将桶中是数据,放入到原数组for (int k = 0; k < bucketElementCounts.length; k++) {// 如果桶中,有数据,我们才放入到原数组if (bucketElementCounts[k] != 0) {// 循环该桶即第k个桶(即第k个一维数组), 放入for (int l = 0; l < bucketElementCounts[k]; l++) {// 取出元素放入到arrarr[index++] = bucket[k][l];}}//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!bucketElementCounts[k] = 0;}System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */}
}

其中,bucket 和 bucketElementCounts 数据调试如下图:

在这里插入图片描述

在这里插入图片描述

算法复杂度

相关术语解释:

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
  • 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
  • 内排序:所有排序操作都在内存中完成;
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  • 时间复杂度: 一个算法执行所耗费的时间。
  • 空间复杂度:运行完一个程序所需内存的大小。
  • n: 数据规模
  • k: “桶”的个数
  • In-place: 不占用额外内存
  • Out-place: 占用额外内存

在这里插入图片描述

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...