德鲁特金属导电理论(Drude)
创始人
2024-05-29 05:28:34
0

德鲁特模型的重要等式

首先我们建立德鲁特模型的重要等式

\vec F_e =m_e \frac{d\vec v}{dt}=-e\vec E-m_e\frac{\vec v}{\tau}

我们把原子对于电子的阻碍作用,用一个冲量近似表示出来


在式子\frac{d\vec v}{dt}=-\frac{e \vec E}{m_e}-\frac{\vec v}{ \tau}

首先定义一个等效加速度

\frac{e\vec E}{m_e}=\frac{\vec v_d}{\tau}

由于

\vec j=-ne\vec v=-ne\vec v_d=ne(\frac{e\vec E \tau}{m_e})=\sigma_0 \vec E 

我们可以得到电导率的微观表达式\sigma_0 =\frac{ne^2 \tau } { m_e }


在交流电环境中

电场的表达式E(t)=E(\omega)e^{i\omega t}

 借鉴上一问的公式

我们可以列出这样的表达式

m\frac{d\vec v(t)}{dt}=-eE(t)-m_e \frac{\vec v(t)}{\tau},代入电场的表达式,我们可以得到

m\frac{E(\omega) de^{-i\omega t}}{dt}=-eE(\omega) de^{-i\omega t}-m_e \frac{\vec v(\omega)e^{-i\omega t}}{\tau}

左边求导数,我们可以得到

-i\omega m_e E(\omega) e^{-i\omega t}=-eE(\omega) de^{-i\omega t}-m_e \frac{\vec v(\omega)e^{-i\omega t}}{\tau}

化简可以得到

m_e \vec v(\omega)e^{-i\omega t}(-i\omega +\frac{1}{\tau})=-e\vec E e^{-i\omega t}

我们解得

m_e \vec v(\omega)=-\frac{e\vec E(\omega)}{(\frac{1}{\tau}-i\omega)}

\vec v(\omega)=-\frac{e\vec E(\omega)}{m_e (\frac{1}{\tau}-i\omega)}

解得

\vec j=-ne\vec v= \frac{ne^{2} }{m_e (\frac{1}{\tau}-i\omega)}\vec E(\omega)

我们可以得到

\sigma(\omega)=\frac{ne^{2} }{m_e (\frac{1}{\tau}-i\omega)}

这个式子的重要应用就是EM波,电磁波在金属中的传播

\sigma(\omega)=\frac{ne^{2} }{m_e (\frac{1}{\tau}-i\omega)}=\frac{\sigma_0}{(1-i\omega \tau)}


在电磁波的传播中要记住这么几个等式

首先是色散关系表达式

k^2=\frac{\omega^2}{c^2}\varepsilon(\omega),\varepsilon(\omega)=1+\frac{i\sigma_0}{\varepsilon_0 \omega(1-i\omega \tau)}

我们定义plasma frequency

\omega_p=\sqrt{\frac{n e^2}{ m_e \varepsilon_0}}

我们可以得到

\varepsilon(\omega)=1+\frac{\omega_p^{2}}{\omega(\frac{1}{i\tau}-\omega)}

\varepsilon(\omega)=1-\frac{\omega_p^{2}}{i\frac{\omega}{\tau}+\omega^2}

if \ \ \ \omega \tau>>1,\omega^2>>\frac{\omega}{\tau}

\varepsilon(\omega)=1-\frac{\omega_p^{2}}{i\frac{\omega}{\tau}+\omega^2}=1-\frac{\omega_p^2}{\omega^2}

if \ \ \ \omega =\omega_p,\varepsilon(\omega)=0,k=0,\lambda =\frac{2 \pi}{k}=\infty

the propagation mode with \omega_p对应于均匀震荡电子气在金属中,这个模式称为等离子震荡模式

 给出了电磁波的金属中的传播条件

 

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...