TensorRT的Python接口解析
创始人
2024-05-25 20:09:36
0

TensorRT的Python接口解析

在这里插入图片描述

文章目录

  • TensorRT的Python接口解析
    • 4.1. The Build Phase
      • 4.1.1. Creating a Network Definition in Python
      • 4.1.2. Importing a Model using the ONNX Parser
      • 4.1.3. Building an Engine
    • 4.2. Deserializing a Plan
    • 4.3. Performing Inference

点此链接加入NVIDIA开发者计划

本章说明 Python API 的基本用法,假设您从 ONNX 模型开始。 onnx_resnet50.py示例更详细地说明了这个用例。

Python API 可以通过tensorrt模块访问:

import tensorrt as trt

4.1. The Build Phase

要创建构建器,您需要首先创建一个记录器。 Python 绑定包括一个简单的记录器实现,它将高于特定严重性的所有消息记录到stdout

logger = trt.Logger(trt.Logger.WARNING)

或者,可以通过从ILogger类派生来定义您自己的记录器实现:

class MyLogger(trt.ILogger):def __init__(self):trt.ILogger.__init__(self)def log(self, severity, msg):pass # Your custom logging implementation herelogger = MyLogger()

然后,您可以创建一个构建器:

builder = trt.Builder(logger)

4.1.1. Creating a Network Definition in Python

创建构建器后,优化模型的第一步是创建网络定义:

network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

为了使用 ONNX 解析器导入模型,需要EXPLICIT_BATCH标志。有关详细信息,请参阅显式与隐式批处理部分。

4.1.2. Importing a Model using the ONNX Parser

现在,需要从 ONNX 表示中填充网络定义。您可以创建一个 ONNX 解析器来填充网络,如下所示:

parser = trt.OnnxParser(network, logger)

然后,读取模型文件并处理任何错误:

success = parser.parse_from_file(model_path)
for idx in range(parser.num_errors):print(parser.get_error(idx))if not success:pass # Error handling code here

4.1.3. Building an Engine

下一步是创建一个构建配置,指定 TensorRT 应该如何优化模型:

config = builder.create_builder_config()

这个接口有很多属性,你可以设置这些属性来控制 TensorRT 如何优化网络。一个重要的属性是最大工作空间大小。层实现通常需要一个临时工作空间,并且此参数限制了网络中任何层可以使用的最大大小。如果提供的工作空间不足,TensorRT 可能无法找到层的实现:

config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) # 1 MiB

指定配置后,可以使用以下命令构建和序列化引擎:

serialized_engine = builder.build_serialized_network(network, config)

将引擎保存到文件以供将来使用可能很有用。你可以这样做:

with open(“sample.engine”, “wb”) as f:f.write(serialized_engine)

4.2. Deserializing a Plan

要执行推理,您首先需要使用Runtime接口反序列化引擎。与构建器一样,运行时需要记录器的实例。

runtime = trt.Runtime(logger)

然后,您可以从内存缓冲区反序列化引擎:

engine = runtime.deserialize_cuda_engine(serialized_engine)

如果您需要首先从文件加载引擎,请运行:

with open(“sample.engine”, “rb”) as f:serialized_engine = f.read()

4.3. Performing Inference

引擎拥有优化的模型,但要执行推理需要额外的中间激活状态。这是通过IExecutionContext接口完成的:

context = engine.create_execution_context()

一个引擎可以有多个执行上下文,允许一组权重用于多个重叠的推理任务。 (当前的一个例外是使用动态形状时,每个优化配置文件只能有一个执行上下文。)

要执行推理,您必须为输入和输出传递 TensorRT 缓冲区,TensorRT 要求您在 GPU 指针列表中指定。您可以使用为输入和输出张量提供的名称查询引擎,以在数组中找到正确的位置:

input_idx = engine[input_name]
output_idx = engine[output_name]

使用这些索引,为每个输入和输出设置 GPU 缓冲区。多个 Python 包允许您在 GPU 上分配内存,包括但不限于 PyTorch、Polygraphy CUDA 包装器和 PyCUDA。

然后,创建一个 GPU 指针列表。例如,对于 PyTorch CUDA 张量,您可以使用data_ptr()方法访问 GPU 指针;对于 Polygraphy DeviceArray ,使用ptr属性:

buffers = [None] * 2 # Assuming 1 input and 1 output
buffers[input_idx] = input_ptr
buffers[output_idx] = output_ptr

填充输入缓冲区后,您可以调用 TensorRT 的execute_async方法以使用 CUDA 流异步启动推理。

首先,创建 CUDA 流。如果您已经有 CUDA 流,则可以使用指向现有流的指针。例如,对于 PyTorch CUDA 流,即torch.cuda.Stream() ,您可以使用cuda_stream属性访问指针;对于 Polygraphy CUDA 流,使用ptr属性。
接下来,开始推理:

context.execute_async_v2(buffers, stream_ptr)

通常在内核之前和之后将异步memcpy()排入队列以从 GPU 中移动数据(如果数据尚不存在)。

要确定内核(可能还有memcpy() )何时完成,请使用标准 CUDA 同步机制,例如事件或等待流。例如,对于 Polygraphy,使用:

stream.synchronize()

如果您更喜欢同步推理,请使用execute_v2方法而不是execute_async_v2

更多精彩内容:
https://www.nvidia.cn/gtc-global/?ncid=ref-dev-876561

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...