空间中任意一点到球的截面的最短距离
创始人
2024-05-25 11:42:45
0

假设球的球心坐标为Oball={x0,y0,z0}O_{ball}=\{x_0,y_0,z_0\}Oball​={x0​,y0​,z0​},球的半径为rrr,球的方程为(x−x0)2+(y−y0)2+(z−z0)2=r2(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2(x−x0​)2+(y−y0​)2+(z−z0​)2=r2球的一截面的方程为Ax+By+Cz+1=0Ax+By+Cz+1=0Ax+By+Cz+1=0该截面为一个空间中的圆,球心Oball={x0,y0,z0}O_{ball}=\{x_0,y_0,z_0\}Oball​={x0​,y0​,z0​}在截面上的垂足即为空间中圆的圆心。假设圆上的任意三点的坐标分别为J(x1,y1,z1)J(x_1,y_1,z_1)J(x1​,y1​,z1​),K(x2,y2,z2)K(x_2,y_2,z_2)K(x2​,y2​,z2​),L(x3,y3,z3)L(x_3,y_3,z_3)L(x3​,y3​,z3​),圆心坐标为P=(xp,yp,zp)P=(x_p,y_p,z_p)P=(xp​,yp​,zp​),则球心Oball={x0,y0,z0}O_{ball}=\{x_0,y_0,z_0\}Oball​={x0​,y0​,z0​}在截面上的投影为PPP,可以得到下列向量OballP→=(xp−x0,yp−y0,zp−z0)JK→=(x2−x1,y2−y1,z2−z1)JL→=(x3−x1,y3−y1,z3−z1)\overrightarrow{O_{ball}P}=(x_p-x_0,y_p-y_0,z_p-z_0)\\\overrightarrow{JK}=(x_2-x_1,y_2-y_1,z_2-z_1)\\\overrightarrow{JL}=(x_3-x_1,y_3-y_1,z_3-z_1)Oball​P​=(xp​−x0​,yp​−y0​,zp​−z0​)JK=(x2​−x1​,y2​−y1​,z2​−z1​)JL=(x3​−x1​,y3​−y1​,z3​−z1​)由向量垂直关系OballP→⊥JK→\overrightarrow{O_{ball}P}\bot\overrightarrow{JK}Oball​P​⊥JK以及OballP→⊥JL→\overrightarrow{O_{ball}P}\bot\overrightarrow{JL}Oball​P​⊥JL可以得到(xp−x0)(x2−x1)+(yp−y0)(y2−y1)+(zp−z0)(z2−z1)=0(xp−x0)(x3−x1)+(yp−y0)(y3−y1)+(zp−z0)(z3−z1)=0(x_p-x_0)(x_2-x_1)+(y_p-y_0)(y_2-y_1)+(z_p-z_0)(z_2-z_1)=0\\(x_p-x_0)(x_3-x_1)+(y_p-y_0)(y_3-y_1)+(z_p-z_0)(z_3-z_1)=0(xp​−x0​)(x2​−x1​)+(yp​−y0​)(y2​−y1​)+(zp​−z0​)(z2​−z1​)=0(xp​−x0​)(x3​−x1​)+(yp​−y0​)(y3​−y1​)+(zp​−z0​)(z3​−z1​)=0由J,K,LJ,K,LJ,K,L三点均在截面上,则有(x1y1z1x2y2z2x3y3z3)(ABC)+(111)=0\begin{pmatrix}x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3\end{pmatrix}\begin{pmatrix}A\\B\\C\end{pmatrix}+\begin{pmatrix}1\\1\\1\end{pmatrix}=0​x1​x2​x3​​y1​y2​y3​​z1​z2​z3​​​ABC​​+​111​​=0解得(ABC)=−(x1y1z1x2y2z2x3y3z3)−1(111)\begin{pmatrix}A\\B\\C\end{pmatrix}=-\begin{pmatrix}x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3\end{pmatrix}^{-1}\begin{pmatrix}1\\1\\1\end{pmatrix}​ABC​​=−​x1​x2​x3​​y1​y2​y3​​z1​z2​z3​​​−1​111​​因为点PPP在截面上,所以Axp+Byp+Czp+1=0Ax_p+By_p+Cz_p+1=0Axp​+Byp​+Czp​+1=0,联立方程组得{(xp−x0)(x2−x1)+(yp−y0)(y2−y1)+(zp−z0)(z2−z1)=0(xp−x0)(x3−x1)+(yp−y0)(y3−y1)+(zp−z0)(z3−z1)=0Axp+Byp+Czp+1=0\begin{equation*}\begin{cases} (x_p-x_0)(x_2-x_1)+(y_p-y_0)(y_2-y_1)+(z_p-z_0)(z_2-z_1)=0\\ (x_p-x_0)(x_3-x_1)+(y_p-y_0)(y_3-y_1)+(z_p-z_0)(z_3-z_1)=0 \\ Ax_p+By_p+Cz_p+1=0 \end{cases}\end{equation*}⎩⎧​(xp​−x0​)(x2​−x1​)+(yp​−y0​)(y2​−y1​)+(zp​−z0​)(z2​−z1​)=0(xp​−x0​)(x3​−x1​)+(yp​−y0​)(y3​−y1​)+(zp​−z0​)(z3​−z1​)=0Axp​+Byp​+Czp​+1=0​​解得(xpypzp)=(x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1ABC)−1(x0(x2−x1)+y0(y2−y1)+z0(z2−z1)x0(x3−x1)+y0(y3−y1)+z0(z3−z1)−1)\begin{pmatrix}x_p\\y_p\\z_p\end{pmatrix}=\begin{pmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1\\A&B&C\end{pmatrix}^{-1}\begin{pmatrix}x_0(x_2-x_1)+y_0(y_2-y_1)+z_0(z_2-z_1)\\x_0(x_3-x_1)+y_0(y_3-y_1)+z_0(z_3-z_1)\\-1\end{pmatrix}​xp​yp​zp​​​=​x2​−x1​x3​−x1​A​y2​−y1​y3​−y1​B​z2​−z1​z3​−z1​C​​−1​x0​(x2​−x1​)+y0​(y2​−y1​)+z0​(z2​−z1​)x0​(x3​−x1​)+y0​(y3​−y1​)+z0​(z3​−z1​)−1​​球心到截面的距离为d1=∣Ax0+By0+Cz0+1∣A2+B2+C2d_1=\frac{|Ax_0+By_0+Cz_0+1|}{\sqrt{A^2+B^2+C^2}}d1​=A2+B2+C2​∣Ax0​+By0​+Cz0​+1∣​空间中圆的半径为rcircle=r2−d12r_{circle}=\sqrt{r^2-d_1^2}rcircle​=r2−d12​​。

假设空间中任意一点m(xm,ym,zm)m(x_m,y_m,z_m)m(xm​,ym​,zm​),该点到截面的距离为d2=∣Axm+Bym+Czm+1∣A2+B2+C2d_2=\frac{|Ax_m+By_m+Cz_m+1|}{\sqrt{A^2+B^2+C^2}}d2​=A2+B2+C2​∣Axm​+Bym​+Czm​+1∣​垂足为Q=(xq,yq,zq)Q=(x_q,y_q,z_q)Q=(xq​,yq​,zq​),则有(xqyqzq)=(x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1ABC)−1(xm(x2−x1)+ym(y2−y1)+zm(z2−z1)xm(x3−x1)+ym(y3−y1)+zm(z3−z1)−1)\begin{pmatrix}x_q\\y_q\\z_q\end{pmatrix}=\begin{pmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1\\A&B&C\end{pmatrix}^{-1}\begin{pmatrix}x_m(x_2-x_1)+y_m(y_2-y_1)+z_m(z_2-z_1)\\x_m(x_3-x_1)+y_m(y_3-y_1)+z_m(z_3-z_1)\\-1\end{pmatrix}​xq​yq​zq​​​=​x2​−x1​x3​−x1​A​y2​−y1​y3​−y1​B​z2​−z1​z3​−z1​C​​−1​xm​(x2​−x1​)+ym​(y2​−y1​)+zm​(z2​−z1​)xm​(x3​−x1​)+ym​(y3​−y1​)+zm​(z3​−z1​)−1​​垂足QQQ到圆心PPP的距离为d3=(xp−xq)2+(yp−yq)2+(zp−zq)2d_3=\sqrt{(x_p-x_q)^2+(y_p-y_q)^2+(z_p-z_q)^2}d3​=(xp​−xq​)2+(yp​−yq​)2+(zp​−zq​)2​则垂足QQQ到空间圆上的最短距离为d4=rcircle−d3d_4=r_{circle}-d_3d4​=rcircle​−d3​,对应的圆上的点的坐标为T=(xt,yt,zt)T=(x_t,y_t,z_t)T=(xt​,yt​,zt​),则该点的坐标满足以下的方程组{(xt−x0)2+(yt−y0)2+(zt−z0)2=r2Axt+Byt+Czt+1=0(xq−xt)2+(yq−yt)2+(zq−zt)2=d42\begin{equation*}\begin{cases} (x_t-x_0)^2+(y_t-y_0)^2+(z_t-z_0)^2=r^2 \\ Ax_t+By_t+Cz_t+1= 0 \\ (x_q-x_t)^2+(y_q-y_t)^2+(z_q-z_t)^2=d_4^2 \end{cases}\end{equation*}⎩⎧​(xt​−x0​)2+(yt​−y0​)2+(zt​−z0​)2=r2Axt​+Byt​+Czt​+1=0(xq​−xt​)2+(yq​−yt​)2+(zq​−zt​)2=d42​​​方程1满足点在球面上,方程2满足点在截面上,方程3满足点到垂足QQQ的距离为d4d_4d4​。

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...