不妨假设C(n,K)=C(n,K),0≤K≤NC(n, K)=C(n, K) ,0 \le K\le NC(n,K)=C(n,K),0≤K≤N成立,只需证明C(n+1,K)=(n+1)!K!(n−K+1)!,0≤K≤NC(n+1, K)=\frac {(n+1)!}{K!(n-K+1)!} ,0 \le K\le NC(n+1,K)=K!(n−K+1)!(n+1)!,0≤K≤N即可
C(n+1,K)=C(n,K)+C(n,K−1)=n!K!(n−K)!+n!(K−1)!(n−K+1)!=n!(n−K+1+K)K!(n−K+1)!=n!(n+1)K!(n−K+1)!=(n+1)!K!(n−K+1)!\begin{aligned}C(n+1, K)&=C(n, K)+C(n,K-1)\\&=\frac {n!}{K!(n-K)!}+ \frac {n!}{(K-1)!(n-K+1)!}\\&=\frac {n!(n-K+1 + K)}{K!(n-K+1)!}\\&=\frac {n!(n+1)}{K!(n-K+1)!}\\&=\frac {(n+1)!}{K!(n-K+1)!}\end{aligned}C(n+1,K)=C(n,K)+C(n,K−1)=K!(n−K)!n!+(K−1)!(n−K+1)!n!=K!(n−K+1)!n!(n−K+1+K)=K!(n−K+1)!n!(n+1)=K!(n−K+1)!(n+1)!
则p=P(B∣A)=P(AB)P(A)=P(X=−1)P(∣X∣=1)=12×1412×18+12×14=23\begin{aligned}p&= P(B |A)\\&= \frac{ P(AB)}{P(A)}\\&=\frac{ P(X=-1)}{ P(|X| =1 )}\\&=\frac{\frac 12 \times \frac 1 4}{\frac 12 \times \frac 1 8 +\frac 12 \times \frac 1 4}\\&=\frac 2 3 \end{aligned}p=P(B∣A)=P(A)P(AB)=P(∣X∣=1)P(X=−1)=21×81+21×4121×41=32
初等行变换即可,r为2
(121103112)⟶(2)−(1)(1210−22112)⟶(3)−(1)(1210−220−11)⟶(2)/2(1210−110−11)⟶(3)+(2)(1210−11000)\left( \begin{matrix} 1 & 2 & 1 \\ 1 & 0& 3 \\ 1 & 1& 2 \end{matrix} \right) \overset{(2)-(1)} {\longrightarrow} \left( \begin{matrix} 1 & 2 & 1 \\ 0 & -2& 2 \\ 1 & 1& 2 \end{matrix} \right)\overset{(3)-(1)} {\longrightarrow} \\ \left( \begin{matrix} 1 & 2 & 1 \\ 0 & -2& 2 \\ 0 & -1& 1 \end{matrix} \right)\overset{(2)/2} {\longrightarrow}\left( \begin{matrix} 1 & 2 & 1 \\ 0 & -1& 1 \\ 0 & -1& 1 \end{matrix} \right)\overset{(3)+(2)} {\longrightarrow} \left( \begin{matrix} 1 & 2 & 1 \\ 0 & -1& 1 \\ 0 & 0& 0 \end{matrix} \right) 111201132⟶(2)−(1)1012−21122⟶(3)−(1)1002−2−1121⟶(2)/21002−1−1111⟶(3)+(2)1002−10110
(024242331)−1=(024242331)∗∣(024242331)∣=(−210−124−128−66−4)−16\left( \begin{matrix} 0 & 2 & 4 \\ 2 & 4& 2 \\ 3 & 3& 1 \end{matrix} \right)^{-1}=\frac{\left( \begin{matrix} 0 & 2 & 4 \\ 2 & 4& 2 \\ 3 & 3& 1 \end{matrix} \right)^*}{|\left( \begin{matrix} 0 & 2 & 4 \\ 2 & 4& 2 \\ 3 & 3& 1 \end{matrix} \right)|}=\frac{\left( \begin{matrix} -2 & 10 & -12 \\ 4 & -12& 8 \\ -6 & 6& -4 \end{matrix} \right)}{-16}023243421−1=∣023243421∣023243421∗=−16−24−610−126−128−4
(A−λE)=(3−λ1124−λ2−1−11−λ)⟶(4−λ4−λ4−λ02−λ0002−λ)=(4−λ)(2−λ)2(A-\lambda E)=\left( \begin{matrix} 3-\lambda & 1 & 1 \\ 2 & 4-\lambda & 2 \\ -1 & -1 & 1-\lambda \end{matrix} \right) \longrightarrow \left( \begin{matrix} 4-\lambda & 4-\lambda & 4-\lambda \\ 0 & 2-\lambda & 0 \\ 0 & 0 & 2-\lambda \end{matrix} \right)\\ =(4-\lambda)(2-\lambda)^2 \\ (A−λE)=3−λ2−114−λ−1121−λ⟶4−λ004−λ2−λ04−λ02−λ=(4−λ)(2−λ)2
求得 x⃗1=(12−1)\vec x_1=\left( \begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right)x1=12−1
(a)
不妨认为M∈Rm×n,U∈Rm×m,Σ∈Rm×n,V∈Rn×nM\in\mathbb R^{m\times n},U\in \mathbb R^{m\times m},\Sigma\in \mathbb R^{m\times n}, V\in \mathbb R^{n\times n}M∈Rm×n,U∈Rm×m,Σ∈Rm×n,V∈Rn×n易得Σ†∈Rn×m\Sigma^{\dagger}\in \mathbb R^{n\times m}Σ†∈Rn×m
所以有MM†M=UΣVTVΣ†UTUΣVT=U(ΣΣ†)ΣVT=UImΣVT=UΣVT\begin{aligned} MM^{\dagger}M &=U\Sigma V^TV\Sigma^{\dagger} U^TU\Sigma V^T\\ &=U(\Sigma\Sigma^{\dagger})\Sigma V^T\\ &=UI_m\Sigma V^T\\ &=U\Sigma V^T \end{aligned}MM†M=UΣVTVΣ†UTUΣVT=U(ΣΣ†)ΣVT=UImΣVT=UΣVT
(b)
M†=VΣ†UT(M可逆,则m=n,且Σ†=Σ−1)=VΣ−1UT=(UΣVT)−1=M−1\begin{aligned} M^{\dagger} &= V\Sigma^{\dagger} U^T(M 可逆,则m=n,且\Sigma^{\dagger}=\Sigma^{-1}) \\ &=V\Sigma^{-1} U^T \\ &=(U\Sigma V^T)^{-1}\\ &=M^{-1} \end{aligned}M†=VΣ†UT(M可逆,则m=n,且Σ†=Σ−1)=VΣ−1UT=(UΣVT)−1=M−1
(a)
∀x,xTZZTx=(ZTx)T(ZTx)≥0\forall x,x^T ZZ^T x= (Z^Tx)^T(Z^Tx)\ge 0∀x,xTZZTx=(ZTx)T(ZTx)≥0,得证
(b)
由已知易知,Λ\LambdaΛ>0,则必要性证明成功
则有xTΛx=eiTQTAQei=eiTΛei=λi>0\begin{aligned} x^T \Lambda x &= e_i^T Q^TA Qe_i \\ &=e_i^T \Lambda e_i \\ &=\lambda_i\\ &>0 \end{aligned}xTΛx=eiTQTAQei=eiTΛei=λi>0充分性证明成功
df(x)dx=−2e−2x1+e−2x=−21+e2x∂g(x,y)∂y=2e2y+e3xy26xy\begin{aligned} \frac {d f(x)}{dx} &= \frac {-2e^{-2x}} {1+e^{-2x}}=-\frac {2}{1+e^{2x}} \\ \frac {\partial g(x,y)}{\partial y} &= 2e^{2y}+e^{3xy^2} 6xy \end{aligned}dxdf(x)∂y∂g(x,y)=1+e−2x−2e−2x=−1+e2x2=2e2y+e3xy26xy
∂f∂v=∂f∂x∂x∂v+∂f∂y∂y∂v=−ysin(u+v)−xcos(u−v)\begin{aligned} \frac {\partial f}{\partial v} &=\frac {\partial f}{\partial x} \frac {\partial x}{\partial v}+ \frac {\partial f}{\partial y} \frac {\partial y}{\partial v}\\ &=-y\sin(u+v)-x\cos (u-v) \end{aligned}∂v∂f=∂x∂f∂v∂x+∂y∂f∂v∂y=−ysin(u+v)−xcos(u−v)
一阶偏导:
∂E(u,v)∂u=2(uev−2ve−u)(ev+2ve−u)∂E(u,v)∂v=2(uev−2ve−u)(uev−2e−u)\begin{aligned} \frac{\partial E(u,v)}{\partial u} &=2(ue^v -2ve^{-u} )(e^v +2ve^{-u})\\ \frac{\partial E(u,v)}{\partial v} &=2(ue^v -2ve^{-u} )(ue^v -2e^{-u})\\ \end{aligned}∂u∂E(u,v)∂v∂E(u,v)=2(uev−2ve−u)(ev+2ve−u)=2(uev−2ve−u)(uev−2e−u)
二阶偏导:
∂2E(u,v)∂u2=2∂∂u(ue2v−2vev−u+2uvev−u−4v2e−2u)=2(e2v+2vev−u+2vev−u−2uvev−u+8v2e−2u)=2(e2v+4vev−u−2uvev−u+8v2e−2u)∂2E(u,v)∂v2=2∂∂v(u2e2v−2uvev−u−2uev−u+4ve−2u)=2(2u2e2v−2uev−u−2uvev−u−2uev−u+4e−2u)=2(2u2e2v−4uev−u−2uvev−u+4e−2u)∂2E(u,v)∂u∂v=2∂∂v(ue2v−2vev−u+2uvev−u−4v2e−2u)=2(2ue2v−2ev−u−2vev−u+2uev−u+2uvev−u−8ve−2u)\begin{aligned} \frac{\partial^2 E(u,v)}{\partial u^2} &=2\frac{\partial}{\partial u}(ue^{2v} -2v e^{v-u}+2uve^{v-u}-4v^2 e^{-2u})\\ &=2(e^{2v} +2v e^{v-u}+2ve^{v-u}-2uve^{v-u}+8v^2 e^{-2u}) \\ &=2(e^{2v} +4v e^{v-u}-2uve^{v-u}+8v^2 e^{-2u})\\ \frac{\partial^2 E(u,v)}{\partial v^2} &=2\frac{\partial}{\partial v}(u^2e^{2v} -2uv e^{v-u}-2ue^{v-u}+4ve^{-2u})\\ &=2(2u^2e^{2v} -2u e^{v-u}-2uv e^{v-u}-2ue^{v-u}+4e^{-2u})\\ &=2(2u^2e^{2v} -4u e^{v-u}-2uv e^{v-u}+4e^{-2u}) \\ \frac{\partial^2 E(u,v)}{\partial u \partial v} &=2\frac{\partial}{\partial v}(ue^{2v} -2v e^{v-u}+2uve^{v-u}-4v^2 e^{-2u})\\ &=2(2ue^{2v} -2 e^{v-u}-2ve^{v-u}+2ue^{v-u}+2uve^{v-u} -8v e^{-2u}) \\ \end{aligned}∂u2∂2E(u,v)∂v2∂2E(u,v)∂u∂v∂2E(u,v)=2∂u∂(ue2v−2vev−u+2uvev−u−4v2e−2u)=2(e2v+2vev−u+2vev−u−2uvev−u+8v2e−2u)=2(e2v+4vev−u−2uvev−u+8v2e−2u)=2∂v∂(u2e2v−2uvev−u−2uev−u+4ve−2u)=2(2u2e2v−2uev−u−2uvev−u−2uev−u+4e−2u)=2(2u2e2v−4uev−u−2uvev−u+4e−2u)=2∂v∂(ue2v−2vev−u+2uvev−u−4v2e−2u)=2(2ue2v−2ev−u−2vev−u+2uev−u+2uvev−u−8ve−2u)
代入题目条件u、v=1有
∂E(u,v)∂u∣u=1,v=1=2(e2−4e−2)∂E(u,v)∂v∣u=1,v=1=2(e2+4e−2−4)∂2E(u,v)∂u2∣u=1,v=1=2(e2+8e−2+2)∂2E(u,v)∂v2∣u=1,v=1=2(2e2+4e−2−6)∂2E(u,v)∂u∂v∣u=1,v=1=2(2e2−8e−2)\begin{aligned} \frac{\partial E(u,v)}{\partial u} \Big |_{u=1,v=1} &=2(e^2 -4e^{-2}) \\ \frac{\partial E(u,v)}{\partial v} \Big |_{u=1,v=1} &=2(e^2 +4e^{-2}-4) \\ \frac{\partial^2 E(u,v)}{\partial u^2}\Big |_{u=1,v=1}& =2(e^2+8e^{-2}+2) \\ \frac{\partial^2 E(u,v)}{\partial v^2}\Big |_{u=1,v=1}& =2(2e^2+4e^{-2}-6) \\ \frac{\partial^2 E(u,v)}{\partial u\partial v}\Big |_{u=1,v=1}& =2(2e^2 -8e^{-2}) \\ \end{aligned}∂u∂E(u,v)u=1,v=1∂v∂E(u,v)u=1,v=1∂u2∂2E(u,v)u=1,v=1∂v2∂2E(u,v)u=1,v=1∂u∂v∂2E(u,v)u=1,v=1=2(e2−4e−2)=2(e2+4e−2−4)=2(e2+8e−2+2)=2(2e2+4e−2−6)=2(2e2−8e−2)
最后结果为:
∇E=(2(e2−4e−2)2(e2+4e−2−4)),∇2E=(2(e2+8e−2+2)2(2e2−8e−2)2(2e2−8e−2)2(2e2+4e−2−6))\begin{aligned} \nabla E= \left( \begin{matrix} 2(e^2 -4e^{-2}) \\ 2(e^2 +4e^{-2}-4) \end{matrix} \right) , \nabla^2 E = \left( \begin{matrix} 2(e^2+8e^{-2}+2) & 2(2e^2 -8e^{-2}) \\ 2(2e^2 -8e^{-2}) & 2(2e^2+4e^{-2}-6) \end{matrix} \right) \end{aligned}∇E=(2(e2−4e−2)2(e2+4e−2−4)),∇2E=(2(e2+8e−2+2)2(2e2−8e−2)2(2e2−8e−2)2(2e2+4e−2−6))
E(u,v)≈E(1,1)+∇ET(u−1v−1)+12!(u−1v−1)∇2E(u−1v−1)=(e−2e−1)2+2(e2−4e−2)(u−1)+2(e2+4e−2−4)(v−1)+(e2+8e−2+2)(u−1)2+(2e2+4e−2−6)(v−1)2+2(2e2−8e−2)(u−1)(v−1)\begin{aligned} E(u,v) &\approx E(1, 1)+ \nabla E^T \left( \begin{matrix} u- 1 \\ v- 1 \end{matrix} \right) + \frac 1 {2!} \left( \begin{matrix} u- 1 & v- 1 \end{matrix} \right) \nabla^2 E \left( \begin{matrix} u- 1 \\ v- 1 \end{matrix} \right) \\ &=(e-2e^{-1})^2 + 2(e^2 -4e^{-2}) (u-1)+ 2(e^2 +4e^{-2}-4)(v-1)\\ &+(e^2+8e^{-2}+2) (u-1)^2 + (2e^2+4e^{-2}-6)(v-1)^2+2(2e^2 -8e^{-2})(u-1)(v-1) \end{aligned}E(u,v)≈E(1,1)+∇ET(u−1v−1)+2!1(u−1v−1)∇2E(u−1v−1)=(e−2e−1)2+2(e2−4e−2)(u−1)+2(e2+4e−2−4)(v−1)+(e2+8e−2+2)(u−1)2+(2e2+4e−2−6)(v−1)2+2(2e2−8e−2)(u−1)(v−1)
Aeα+Be−2α=A2eα+A2eα+Be−2α≥3A2eα×A2eα×Be−2α3=3A2B43\begin{aligned} &Ae^{\alpha} +Be^{-2\alpha}\\ &=\frac A 2 e^{\alpha}+\frac A 2 e^{\alpha} +Be^{-2\alpha}\\ &\ge 3 \sqrt[3] {\frac A 2 e^{\alpha}\times\frac A 2 e^{\alpha} \times Be^{-2\alpha}} \\ &=3\sqrt[3]{\frac {A^2B} 4} \end{aligned}Aeα+Be−2α=2Aeα+2Aeα+Be−2α≥332Aeα×2Aeα×Be−2α=334A2B当且仅当
A2eα=A2eα=Be−2αα=13ln2BA\begin{aligned}&\frac A 2 e^{\alpha}=\frac A 2 e^{\alpha} =Be^{-2\alpha}\\ &\alpha =\frac 1 3 \ln \frac {2B} A\end{aligned}2Aeα=2Aeα=Be−2αα=31lnA2B
原式展开有:
E(w)=12∑i=1d∑j=1dwiAijwj+∑i=1dwibi\begin{aligned} E(w) & =\frac 1 2 \sum_{i=1}^d \sum_{j=1}^d w_{i}A_{ij}w_j + \sum_{i=1}^d w_i b_i \end{aligned}E(w)=21i=1∑dj=1∑dwiAijwj+i=1∑dwibi
由于A是对称矩阵:
∂E(w)∂wk=12∑j=1dAkjwj+12∑i=1dwiAik+bk=∑j=1dAkjwj+bk∂2E(w)∂wl∂wk=∂∂wl(∑j=1dAkjwj+bk)=Akl\begin{aligned} \frac{\partial E(w)}{\partial w_k} &=\frac 1 2 \sum_{j=1}^d A_{kj}w_j+\frac 1 2 \sum_{i=1}^d w_{i}A_{ik} + b_k \\ &=\sum_{j=1}^d A_{kj}w_j +b_k \\ \frac{\partial^2 E(w)}{\partial w_l\partial w_k} &= \frac{\partial}{\partial w_l} \Big(\sum_{j=1}^d A_{kj}w_j +b_k \Big)\\ &= A_{kl} \\ \end{aligned}∂wk∂E(w)∂wl∂wk∂2E(w)=21j=1∑dAkjwj+21i=1∑dwiAik+bk=j=1∑dAkjwj+bk=∂wl∂(j=1∑dAkjwj+bk)=Akl
合成为矩阵形式有:
∇E(w)=Aw+b∇E2(w)=A\begin{aligned} \nabla E(w)& =Aw+b\\ \nabla E^2(w)& =A \end{aligned}∇E(w)∇E2(w)=Aw+b=A