方向导数与梯度下降
创始人
2024-05-24 05:14:42
0

文章目录

  • 方向角与方向余弦
    • 方向角
    • 方向余弦
  • 方向导数
    • 定义
    • 性质
  • 梯度下降

梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

方向角与方向余弦

方向角

在这里插入图片描述
向量(或有向直线)与坐标轴正向或基向量的交角称为向量的方向角。定义域为[0,π][0,\pi][0,π]。

方向余弦

{cos⁡α=x∣r∣cos⁡β=y∣r∣cos⁡γ=z∣r∣\begin{cases} \cos\alpha = \frac{x}{|r|}\\ \cos\beta = \frac{y}{|r|}\\ \cos\gamma = \frac{z}{|r|} \end{cases}⎩⎧​cosα=∣r∣x​cosβ=∣r∣y​cosγ=∣r∣z​​
且有cos⁡2α+cos⁡2β+cos⁡2γ=1\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1cos2α+cos2β+cos2γ=1

方向导数

定义

给定标量函数f(x,y,z)f(x,y,z)f(x,y,z),和任意向量l⃗\vec{l}l,该向量与三个坐标轴的夹角分别为α\alphaα、β\betaβ、γ\gammaγ,从定义域中一定P0(x,y,z)P_0(x,y,z)P0​(x,y,z)出发,沿着向量l⃗\vec{l}l方向移动距离Δs\Delta sΔs,到达点P1(x+Δscos⁡α,y+Δscos⁡β,z+Δscos⁡γ)P_1(x+\Delta s \cos\alpha,y+\Delta s \cos\beta,z+\Delta s \cos\gamma)P1​(x+Δscosα,y+Δscosβ,z+Δscosγ),定义方向导数:
dfdl⃗=lim⁡Δs→0f(x+Δscos⁡α,y+Δscos⁡β,z+Δscos⁡γ)−f(x,y,z)Δs\frac{df}{d\vec{l}}=\lim_{\Delta s \to 0}\frac{f(x+\Delta s \cos\alpha,y+\Delta s \cos\beta,z+\Delta s \cos\gamma)-f(x,y,z)}{\Delta s}dldf​=limΔs→0​Δsf(x+Δscosα,y+Δscosβ,z+Δscosγ)−f(x,y,z)​

代表函数fff在方向l⃗\vec{l}l的变化率。

性质

dfdl⃗=∂f∂xcos⁡α+∂f∂ycos⁡β+∂f∂zcos⁡γ=(∂f∂x,∂f∂y,∂f∂z)⋅(cos⁡α,cos⁡β,cos⁡γ)=∇f⋅n⃗=∣∇f∣cos⁡⟨∇f,l⃗⟩\begin{aligned} \frac{df}{d\vec{l}} &=\frac{\partial f}{\partial x}\cos\alpha+\frac{\partial f}{\partial y}\cos\beta+\frac{\partial f}{\partial z}\cos\gamma \\ \\ &=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})\cdot(\cos\alpha,\cos\beta,\cos\gamma)=\nabla f \cdot\vec{n}=|\nabla f|\cos\lang\nabla f,\vec{l}\rang \end{aligned}dldf​​=∂x∂f​cosα+∂y∂f​cosβ+∂z∂f​cosγ=(∂x∂f​,∂y∂f​,∂z∂f​)⋅(cosα,cosβ,cosγ)=∇f⋅n=∣∇f∣cos⟨∇f,l⟩​

当l⃗\vec{l}l取fff的梯度方向时,cos⁡⟨∇f,l⃗⟩=1\cos\lang\nabla f,\vec{l}\rang=1cos⟨∇f,l⟩=1,变化率绝对值最大且为正;当l⃗\vec{l}l取fff的负梯度方向时,cos⁡⟨∇f,l⃗⟩=−1\cos\lang\nabla f,\vec{l}\rang=-1cos⟨∇f,l⟩=−1,变化率绝对值最大且为负。

梯度下降

应用场景:求损失函数的最小值。
梯度下降的具体算法实现过程是:

1、确定模型和损失函数;
2、参数初始化,包括:参数、算法终止条件和步长;
3、参数更新θj+1=θj−α∂J∂θj\theta_{j+1}=\theta_j - \alpha \frac{\partial J}{\partial\theta_j}θj+1​=θj​−α∂θj​∂J​
4、判断停止条件,若满足,则停止,若不满足,则继续更新。

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
ChatGPT 怎么用最新详细... ChatGPT 以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...