树的知识概括锦囊(一)
创始人
2024-05-14 13:43:51
0

作者:爱塔居

专栏:数据结构

作者简介:大三学生,希望跟大家一起进步!

文章目录

目录

文章目录

一、树形结构

二、树的基础知识

三、二叉树

3.1 概念

3.2 特殊的二叉树

​编辑

 3.3 二叉树的性质

四、习题挑战


一、树形结构

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合,把它叫做树是因为它是根朝上,叶子朝下的。

以下这个图就是二叉树:

树有以下特点:

🎈有一个特殊的结点,称为根结点,根结点没有前驱结点

🎗除根结点外,其余结点被分为M(M>0)个互不相交的集合T^{_{1}}T^{_{2}}、……、T_{m},其中每一个集合T(1<=i<=m)又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。

🎀树是递归定义的。

🍟树形结构中,子树之间不能有交集。而且除了根结点,每个结点有且仅有一个父结点

这两种都不是二叉树:

 

🧁一棵N个结点的树有N-1条边

二、树的基础知识

结点的度:一个结点含有子树的个数,称为该结点的度;如上图:A的度为6

树的度:一棵树中所有结点度的最大值称为树的度;如上图:树的度为6

叶子结点或终端结点:度为0的结点称为叶子结点;如上图:B、C、H、I、P、Q、K、L、M、N是叶子结点。

双亲结点或者父结点:若一个结点含有子结点;则这个结点称为其子节点的父节点;如上图,A是B的父结点。

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子节点:B是A的孩子结点

根结点:一个树,没有双亲结点的结点;就如图中的A

结点的层次:从根开始定义,根为第一层,根的子节点为第2层,以此类推。

树的高度或深度:树中结点的最大层次;如上图:树的高度为4

三、二叉树

3.1 概念

一棵二叉树是结点的一个有限集合,该集合:

1.或者为空

2.或者是由一个根结点加上两棵别称为左子树和右子树的二叉树组成。

二叉树不存在度大于2的结点且二叉树的子树有左右之分,次序不能颠倒,所以二叉树是有序树。

3.2 特殊的二叉树

 满二叉树在外观上是一个三角形的结构,比较好认。而且如果一棵二叉树的层数为K,且结点总数为2^{^{k}}-1,则它就是满二叉树。我们还能得出第K层的结点数为2^{k-1}.

满二叉树

 

 如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。满二叉树是一种特殊的完全二叉树。

 3.3 二叉树的性质

1.若规定根结点的层数为1,则一颗非空二叉树的第i层上最多有2^{i-1}(i>0)个结点(也就是当二叉树为完全二叉树的情况)。

2.若规定只有根结点的二叉树的深度为,则深度为K的二叉树的最大结点数是2^{k}-1(k>=0)(当二叉树为满二叉树的情况)。

3.对任何一棵二叉树,如果其叶结点个数为n_{0},度为2的非叶结点个数为n^{_{2}},则有n_{0}=n_{2}+1

推算过程:

设二叉树度为0的结点数为n_{0},度为1的结点数为n_{1},度为2的结点数为n_{2},总结点数设为N。

二叉树只有这三种结点,故N=n_{0}+n_{1}+n_{2}————①;

我们前面提过,结点为N的二叉树,会有N-1条边。

N-1=2\times n_{2}+1\times n_{1}+0\times n_{0},故N=2\times n_{2}+n_{1}+1————②;

①②联合起来:n_{0}+n_{1}+n_{2}=2\times n_{2}+n_{1}+1,简化后n_{0_{}}=n_{2}+1

4.具有n个结点的完全二叉树的深度k为log_{2}^{(n+1)}上取整。

推导过程:

因为深度为k的二叉树的最大结点数为2^{k}-1

2^{k}-1=n \Rightarrow 2^{k}=n+1 \Rightarrow k=log{_{2}}^{n+1}

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1 若2i+2  

四、习题挑战

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199

推导过程:n_{0}=n_{2}+1\Rightarrow n_{0}=200

2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

推导过程:

2n>>偶数个结点的情况:

如图,n=5,叶子结点个数为5

正经推算:

2n=n_{0}+n_{1}+n_{2}

偶数结点的情况:n_{1}=1

n_{0}=n_{2}+1

2n=n_{0}+1+n_{0}-1=2\times n_{0}\Rightarrow n=n_{0}

 

3.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
 

推导过程:

奇数个结点:

n_{1}=0

故 n_{0}+n_{2}=767

又因为n_{0}=n_{2}+1

2\times n_{0}-1=767\Rightarrow 2\times n_{0}=768\Rightarrow n_{0}=384

4.一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

推导过程:具有n个结点的完全二叉树的深度k为log_{2}^{(n+1)}上取整。

 k=log_{2}^{532}

2^{9}=512<532 2^{10}=1024>532

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...