拉格朗日定理:设ppp为素数,对于模ppp意义下的整数系多项式
f(x)=anxn+an−1xn−1+⋯+a0(p∤an)f\left(x\right) = a_n x^n + a_{n - 1} x^{n - 1} + \cdots + a_0 \left( p \nmid a_n\right) f(x)=anxn+an−1xn−1+⋯+a0(p∤an)
的同余方程f(x)≡0(modp)f\left(x\right)\equiv 0 \left(\mathop{mod} p\right)f(x)≡0(modp)在模ppp意义下至少有nnn个不同的解
(xi≢xj(modp),∀i≠jx_i \not\equiv x_j \left(\mathop{mod} p \right),\quad \forall i\neq jxi≡xj(modp),∀i=j)
证明:
n=0n = 0n=0时显然成立
假设degf
设f(x)−f(x0)=(x−x0)g(x)f\left(x\right) - f\left(x_0\right) = \left(x - x_0\right) g\left(x\right)f(x)−f(x0)=(x−x0)g(x)
则g(x)g\left(x\right)g(x)在模ppp意义下时一个至多n−1n-1n−1次多项式
对于1≤i≤n1\le i \le n1≤i≤n,有
(xi−x0)g(xi)≡f(xi)−f(x0)≡0(modp)\left(x_i - x_0\right)g\left(x_i\right) \equiv f\left(x_i\right) - f\left(x_0\right) \equiv 0 \left(\mathop{mod} p\right) (xi−x0)g(xi)≡f(xi)−f(x0)≡0(modp)
又因为xi≢xj(modp),∀i≠jx_i \not\equiv x_j \left(\mathop{mod} p \right),\quad \forall i\neq jxi≡xj(modp),∀i=j
故g(xi)≡0(modp)g\left(x_i\right)\equiv 0\left(\mathop{mod} p\right)g(xi)≡0(modp),从而g(x)≡0(modp)g\left(x\right) \equiv 0 \left(\mathop{mod} p\right)g(x)≡0(modp)至少有nnn个根,矛盾
下一篇:【C++】引用详解