在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。
参考:【CSDN】基于主成分变换(PCA)的图像融合
最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation)工具用于判定图像数据内在的维数(即波段数),分离数据中的噪声,减少随后处理中的计算需求量。MNF本质上是两次层叠的主成分变换。第一次变换(基于估计的噪声协方差矩阵)用于分离和重新调节数据中的噪声,这步操作使变换后的噪声数据只有最小的方差且没有波段间的相关。第二步是对噪声白化数据(Noise-whitened)的标准主成分变换。
参考:MNF最小噪声分离变换(转)
由此可知,MNF变换具有PCA变换的性质,是一种正交变换,变换后得到的向量中的各元素互不相关,第一分量集中了大量的信息,随着维数的增加,影像质量逐渐下降,按照信噪比从大到小排列,而不像PCA变换按照方差由大到小排列,从而克服了噪声对影像质量的影响。正因为变换过程中的噪声具有单位方差,且波段间不相关,所以它比PCA变换更加优越[4]。
上一篇:Wust2022RE题解
下一篇:论文创新及观点2