遥感图像处理:最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation)
创始人
2024-05-08 16:44:24
0

遥感图像处理:最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation

  • 1.PCA变换
  • 2.MNF
  • 3.PCA和MNF

1.PCA变换

在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。

  • 第一步计算矩阵 X 的样本的协方差矩阵 S(此为不标准PCA,标准PCA计算相关系数矩阵C) :
  • 第二步计算协方差矩阵S(或C)的特征向量 e1,e2,…,eN和特征值 , t = 1,2,…,N ;
  • 第三步投影数据到特征向量张成的空间之中。利用公式newBVi,p=∑k=1neiBVi,knew BV_{i,p}=\sum^n_{k=1}e_iBV_{i,k}newBVi,p​=∑k=1n​ei​BVi,k​,其中BV值是原样本中对应维度的值

在这里插入图片描述
在这里插入图片描述
参考:【CSDN】基于主成分变换(PCA)的图像融合
在这里插入图片描述

2.MNF

最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation)工具用于判定图像数据内在的维数(即波段数),分离数据中的噪声,减少随后处理中的计算需求量。MNF本质上是两次层叠的主成分变换。第一次变换(基于估计的噪声协方差矩阵)用于分离和重新调节数据中的噪声,这步操作使变换后的噪声数据只有最小的方差且没有波段间的相关。第二步是对噪声白化数据(Noise-whitened)的标准主成分变换。
参考:MNF最小噪声分离变换(转)
在这里插入图片描述
在这里插入图片描述

3.PCA和MNF

由此可知,MNF变换具有PCA变换的性质,是一种正交变换,变换后得到的向量中的各元素互不相关,第一分量集中了大量的信息,随着维数的增加,影像质量逐渐下降,按照信噪比从大到小排列,而不像PCA变换按照方差由大到小排列,从而克服了噪声对影像质量的影响。正因为变换过程中的噪声具有单位方差,且波段间不相关,所以它比PCA变换更加优越[4]。

上一篇:Wust2022RE题解

下一篇:论文创新及观点2

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...