N个点,求距离最近的两个点---分治策略(1)
创始人
2024-05-07 19:44:30
0

设平面有n个点P_{1},P_{2},...,P_{n},P_{i}的直角坐标是(x_{i},y_{i}),i = 1, 2, ...,n,求距离最近的2个点,距离计算:d(P_{i}, P_{j}) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}

首先这个问题是可以使用蛮力算法,一共n(n-1)/2个点对,每对点对计算需要常数的时间,蛮力算法需要O(n^2)的时间。

由于点对有二维的空间坐标,直觉上我们可以通过将平面进行划分,如图,用一条垂直线将集合P划分为P_L和左右2部分,两部分点数近似相等,即

|P_L| = \left \lceil \frac{|P|}{2} \right \rceil ,|P_R| =\left \lfloor \frac{|P|}{2} \right \rfloor

P中最临近点有3种情况:都在P_L中,都在P_R中,或者一个点在P_L中,一个在P_R中。算法分别计算这3种情况。对于前两种情况,分别计算P_L中和P_R中的点对,这是2个n/2规模的子问题,对于第三种情况,需要找到由一个P_L和一个P_R中的点所构成的最邻近点对。假设P_LP_R中的最邻近的点对的距离分别是\delta _L\delta _R,令\delta = min\{ \delta _L, \delta_R\},那么对于距离小于\delta的点对只可能出现在第3种情况,为了找到这样的点对,只需要寻找垂直线l两边距l不超过\delta的窄缝内的点即可。

MinDistance(P, X, Y)
input : n个点的集合P,X和Y分别给出P中点的橫、纵坐标
output : 最近的两个点及距离
1.如果P中点数小于等于3, 则直接计算其中的最小距离
2.排序X,Y
3.做垂直线l将P近似划分为大小相等的点集PL和PR,PL的点在l左边,PR的点在l的右边
4.MinDistance(PL, XL, YL); dL = PL中的最小距离
5.MinDistance(PR, XR, YR); dR = PR中的最小距离
6.d <- min(dL, dR)
7.对于在线l左边距离d范围内的每个点,检查l右边是否有点与它的距离小于d,如果存在则将d修改为新值

行4和行5是递归调用,每个对应于n/2规模的子问题,行2的排序需要O(nlogn)时间,行3的划分基于行2的排序,不需要额外的计算。行6需要的时间是常数,所以只需要看行7的计算复杂度。如下图

 设左半部分的任意一点(x_i, y_i),在右边窄缝内距离该点小于d的点,其纵坐标一定在y_i + dy_i-d之间,即右边窄缝里面的点一定位于右边长2d,宽d的框框里面,才有可能和(x_i, y_i)的距离小于d。将这个空间分成6份,每一个小矩形的对角线的长度是5d/6,说明在每一个小矩形内最多只能有1个点,因此,右边和(x_i, y_i)的距离小于d的点最多能有6个。对左边的每个点来说,检查另一边是否有点与它距离小于d,只需要检查常数个点。假设所有距线l不超过d的窄缝中的点构成集合S。只要S中点的纵坐标已经排好序(通过顺序扫描Y,检查每个点的橫坐标看它是否距l小于d。如果是,就把它放到S中。这需要额外O(n)时间,不超过行2的O(nlogn)排序时间),我们可以按照S中点的纵坐标顺序考察,比如说从具有最大纵坐标的点开始,顺序检查每个点。如果这个点的纵坐标是y,那么只需要检查那些纵坐标不小于y-d的点,看看其中是否存在分布在分布在另一侧,且与该点的距离小于d的点。上面已经证明在另一侧相关区域内的点不超过6个,而同侧区域的点也不会超过6个,因此这个检查之多需要考察12个纵坐标(如果高度是d,准确地说是不超过8个),这仅需要常数的时间。由于S的点数不超过n,因而对窄缝中所有点的检查需要O(n)时间。而这个时间也不超过行2的排序时间。于是,除了递归调用外,额外的工作时间是O(nlogn).

基于上面的分析,不难写出该算法时间复杂度的递推方程

\left\{\begin{matrix} T(n) = 2T(n/2) + O(nlogn) & \\ T(n) = 1 & n \leqslant 3 \end{matrix}\right.

根据主定理(Master Theorem)推导和理解(3)_Happy_Traveller的博客-CSDN博客​​​​​​

T(n) = O(nlog^2n)

比起蛮力算法O(n^2),已经有了明显的改进

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...