数论专题(1)数论函数,整数分块
创始人
2024-05-01 05:03:20
0

从今天起,我们将要开始数论的学习,是不是感觉很难?难的话就听我讲吧,讲了后就不难了(bushi)

数论函数定义 (数论函数)

数论函数的定义:在全体正整数(或者整数)上定义的函数称作数论函数。 积性的定义:若 gcd(a,b)=1,则f(ab)=f(a)f(b)。 举个栗子: 欧拉函数\varphi (x) :                                  ​​​​​​​        1(x)=1,Id(x)=x,I(x)=[x=1]。 接下来,我们再举一个函数,狄利克雷卷积: 数论函数f(n)和g(n)的狄利克雷卷积h(n)定义为:         ​​​​​​​        ​​​​​​​        ​​​​​​​                        h(n)=\sum_{d|n}^{}f(d)g(\frac{n}{d}) 记作h=f*g; 定理:两个积性函数的狄利克雷卷积也是积性函数。 那我们是如何证明的呢,那可就说来话长了: h(xy)=\sum_{d_{1}|x}^{}f(d_{1})g(\frac{x}{d_{1}})=\sum_{d_{1}|x}^{}\sum_{d_{2}|y}^{}f(d_{1}d_{2})g(\frac{xy}{d_{1}d_{2}})=\sum_{d_{1}|x}^{}f(d_{1})g(\frac{x}{d_{1}})\sum_{d_{2}|y}^{}f(d_{2})g(\frac{y}{d_{2}})=h(x)h(y) 看到这么长一串的函数,我的心就发抖……… 定理:两个积性函数的对应位置相乘也是积性函数。 这个就很显然了,证明我就不给出来了,你们自己想着吧。 所以我们可以定义更多的数论函数,以及用卷积描述它们之间的关系: 例如:         ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        d(x)=\sum_{d|n}1,即d=1*1         ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        n=\sum_{d|n}\varphi (d),即Id=\varphi *1 接下来,我们来研究一下,卷积的性质: 定理(卷积运算律): 交换律:设有两个积性函数f,g则f*g=g*f 结合律:设有两个积性函数f,g,h则(f*g)*h=f*(h*g) 这不就是乘法结合律吗?小学生都会好不好…… 交换律的证明很显然。 结合律的证明可以把式子改写成矩阵形式,然后用矩阵的结合律 来证明。应该大力推式子也可以。 单位元的定理: I是单位元:对任意的数论函数f,f*I=I*f=f; 证明过程如下: ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        f(n)=\sum_{d|n}^{})f(d)I(\frac{n}{d}) 接下来又来到了下一个函数,狄利克雷逆: 若f*g=I,则数论函数f,g互为彼此的狄利克雷逆。

整数分块

接下来,我们进入下一个章节的学习:整数分块

定理:对于任意的i\left \lfloor \frac{n}{i} \right \rfloor 只有O(\sqrt{n})种取值

证明过程如下:

1\leq i\leq \sqrt{n}时,\frac{n}{i}只有​​​​​​​​​​​​​​O(\sqrt{n})种取值 

i> \sqrt{n}​​​​​​​时,\frac{n}{i}\leq \sqrt{n},也只有O(\sqrt{n})种取值

 综上,只有O(\sqrt{n})种取值

下面举个栗子:

计算下取整分式的和式,计算\sum_{i}^{n}=1\left \lfloor \frac{n}{i} \right \rfloor

由于\left \lfloor \frac{n}{i} \right \rfloor只有O(\sqrt{n})种取值 ,并且,使得 \left \lfloor \frac{n}{i} \right \rfloor取相同的取值的i也是一段一段的,所以我们只需要一段一段地计算即可。

res=0;
for(int l=1,r;l<=n;l=r+1){r=n/(n/l);res+=(r-l+1)*(n/l);
}

哎哟,终于讲完了,累死我了,咱么今天就讲到这里,下篇博文我们会讲莫比乌斯反演,记得来收看哦!! 

 

 

 

 

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...