【深度学习】PyTorch深度学习实践 - Lecture_10_Basic_CNN
创始人
2024-04-22 10:25:31
0

文章目录

  • 一、CNN基础流程图
  • 二、CNN的两个阶段
  • 三、卷积的基本知识
    • 3.1 单信道的卷积
    • 3.2 三信道的卷积
    • 3.3 N信道卷积
    • 3.4 输入N信道-输出M信道卷积
    • 3.5 卷积层的常见参数
      • 3.5.1 Padding
      • 3.5.2 Stride
      • 3.5.3 下采样(MaxPooling)
  • 四、实现一个简单的CNN
    • 4.1 网络结构图
    • 4.2 PyTorch代码-CPU
    • 4.3 PyTorch代码-GPU
    • 4.4 课后作业(尝试更复杂的CNN)


一、CNN基础流程图

卷积:对数据升维
下采样:对数据降维

在这里插入图片描述

二、CNN的两个阶段

特征提取阶段:通过卷积下采样对图像数据进行升维和降维,从而实现特征提取
分类器:将特征提取阶段输出的数据展平成一维,再通过全连接层进行分类

在这里插入图片描述

三、卷积的基本知识

卷积后数据维度会变(比如信道数增加、宽度和高度减小)

在这里插入图片描述

3.1 单信道的卷积

在这里插入图片描述

然后通过滑动卷积框,多次进行卷积计算,直到卷积框移动到Input最下最右,此时就将输出矩阵的信息补充完整了

在这里插入图片描述

3.2 三信道的卷积

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 N信道卷积

在这里插入图片描述

3.4 输入N信道-输出M信道卷积

原理:采用M个卷积核对Input进行卷积,这样就得到了M层的输出

在这里插入图片描述
在这里插入图片描述

PyTorch代码实现卷积:

import torchin_channels, out_channels = 5, 10  # 输入信道数、输出信道数
w, h = 100, 100  # 输入图片尺寸
kernel_size = (3, 3)  # 卷积核大小3*3
batch_size = 1  # 每次参与模型更新的数据数量
input = torch.randn(batch_size, in_channels, w, h)  # torch.randn 随机产生输入数据
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)  # 定义卷积层(输入信道数,输出信道数,卷积核大小)
output = conv_layer(input)  # 进行卷积操作
# 输出输入、输出和卷积层权重的形状
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

3.5 卷积层的常见参数

3.5.1 Padding

Padding:在输入数据的四周进行扩展的数量,比如Padding = (1,1)代表在输入数据的四周一圈扩展并填充0
一般地:
当卷积核大小为3×3时:Padding=(1,1)
当卷积核大小为5×5时:Padding=(2,2)

当卷积核大小为n×n时:Padding=(m,m),其中 m =(n-1)/2,n为奇数

在这里插入图片描述

Padding默认填充0

在这里插入图片描述

Padding的意义:

  • 为了不丢弃原图信息
  • 为了保持feature map 的大小与原图一致
  • 为了让更深层的layer的input依旧保持有足够大的信息量
  • 为了实现上述目的,且不做多余的事情,padding出来的pixel的值都是0,不存在噪音问题。

PyTorch代码体会Padding:

import torchinput = [3, 4, 6, 5, 7,2, 4, 6, 8, 2,1, 6, 7, 8, 4,9, 7, 4, 6, 2,3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=(3, 3), padding=(1, 1), bias=False)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

输出:

tensor([[[[ 91., 168., 224., 215., 127.],[114., 211., 295., 262., 149.],[192., 259., 282., 214., 122.],[194., 251., 253., 169.,  86.],[ 96., 112., 110.,  68.,  31.]]]], grad_fn=)

3.5.2 Stride

Stride:卷积核滑动的步长,为一个元组。如Stride =(2,2)分别表示宽和高方向上的滑动步长

在这里插入图片描述

PyTorch代码体会Stride:

import torchinput = [3, 4, 6, 5, 7,2, 4, 6, 8, 2,1, 6, 7, 8, 4,9, 7, 4, 6, 2,3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=(3, 3), stride=(2, 2), bias=False)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

输出:

tensor([[[[211., 262.],[251., 169.]]]], grad_fn=)

3.5.3 下采样(MaxPooling)

最常用的下采样方法是最大池化(Max Pooling)
如下图所示,MaxPooling=(2,2),即将输入数据分成四个(2,2)无交集的区域,然后选取每个区域的最大值作为输出数据

在这里插入图片描述

由MaxPooling的计算特性可知,MaxPooling不会对信道的数量产生影响

PyTorch代码体会MaxPooling:

import torchinput = [3, 4, 6, 5,2, 4, 6, 8,1, 6, 7, 5,9, 7, 4, 6]
input = torch.Tensor(input).view(1, 1, 4, 4)
max_pooling_layer = torch.nn.MaxPool2d(kernel_size=(2, 2))
output = max_pooling_layer(input)
print(output)

输出:

tensor([[[[4., 8.],[9., 7.]]]])

四、实现一个简单的CNN

4.1 网络结构图

在这里插入图片描述
在这里插入图片描述

4.2 PyTorch代码-CPU

构建网络模型:

class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))self.pooling = torch.nn.MaxPool2d((2, 2))self.fc = torch.nn.Linear(320, 10)def forward(self, x):batch_size = x.size(0)x = torch.relu(self.pooling(self.conv1(x)))x = torch.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1)x = self.fc(x)return x

完整代码:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optimclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))self.pooling = torch.nn.MaxPool2d((2, 2))self.fc = torch.nn.Linear(320, 10)def forward(self, x):batch_size = x.size(0)x = torch.relu(self.pooling(self.conv1(x)))x = torch.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1)x = self.fc(x)return x# 单次训练函数
def train(epoch, criterion):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0# 单次测试函数
def ttt():correct = 0.0total = 0.0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))if __name__ == '__main__':batch_size = 64transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# 声明模型model = Net()# 定义损失函数criterion = torch.nn.CrossEntropyLoss()# 定义优化器optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)for epoch in range(10):train(epoch, criterion)ttt()

输出:

[1,   300] loss: 0.564
[1,   600] loss: 0.191
[1,   900] loss: 0.141
Accuracy on test set: 96 %
[2,   300] loss: 0.110
[2,   600] loss: 0.092
[2,   900] loss: 0.088
Accuracy on test set: 97 %
[3,   300] loss: 0.079
[3,   600] loss: 0.072
[3,   900] loss: 0.069
Accuracy on test set: 98 %
[4,   300] loss: 0.064
[4,   600] loss: 0.056
[4,   900] loss: 0.063
Accuracy on test set: 98 %
[5,   300] loss: 0.052
[5,   600] loss: 0.053
[5,   900] loss: 0.055
Accuracy on test set: 98 %
[6,   300] loss: 0.048
[6,   600] loss: 0.050
[6,   900] loss: 0.045
Accuracy on test set: 98 %
[7,   300] loss: 0.048
[7,   600] loss: 0.042
[7,   900] loss: 0.041
Accuracy on test set: 98 %
[8,   300] loss: 0.039
[8,   600] loss: 0.042
[8,   900] loss: 0.040
Accuracy on test set: 98 %
[9,   300] loss: 0.039
[9,   600] loss: 0.034
[9,   900] loss: 0.039
Accuracy on test set: 98 %
[10,   300] loss: 0.034
[10,   600] loss: 0.036
[10,   900] loss: 0.035
Accuracy on test set: 98 %

4.3 PyTorch代码-GPU

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optimclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))self.pooling = torch.nn.MaxPool2d((2, 2))self.fc = torch.nn.Linear(320, 10)def forward(self, x):batch_size = x.size(0)x = torch.relu(self.pooling(self.conv1(x)))x = torch.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1)x = self.fc(x)return x# 单次训练函数
def train(epoch, criterion):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = data# 将inputs, target转移到Gpu或者Cpu上inputs, target = inputs.to(device), target.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0# 单次测试函数
def ttt():correct = 0.0total = 0.0with torch.no_grad():for data in test_loader:images, labels = data# 将images, labels转移到Gpu或者Cpu上images, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))if __name__ == '__main__':batch_size = 64transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 声明模型model = Net()# 将模型转移道Gpu或者Cpu上model.to(device)# 定义损失函数criterion = torch.nn.CrossEntropyLoss()# 定义优化器optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)for epoch in range(10):train(epoch, criterion)ttt()

输出:

[1,   300] loss: 0.666
[1,   600] loss: 0.206
[1,   900] loss: 0.148
Accuracy on test set: 96 % [9652/10000]
[2,   300] loss: 0.117
[2,   600] loss: 0.109
[2,   900] loss: 0.097
Accuracy on test set: 97 % [9749/10000]
[3,   300] loss: 0.080
[3,   600] loss: 0.082
[3,   900] loss: 0.077
Accuracy on test set: 98 % [9804/10000]
[4,   300] loss: 0.067
[4,   600] loss: 0.070
[4,   900] loss: 0.062
Accuracy on test set: 98 % [9814/10000]
[5,   300] loss: 0.056
[5,   600] loss: 0.060
[5,   900] loss: 0.059
Accuracy on test set: 98 % [9845/10000]
[6,   300] loss: 0.053
[6,   600] loss: 0.047
[6,   900] loss: 0.054
Accuracy on test set: 98 % [9855/10000]
[7,   300] loss: 0.047
[7,   600] loss: 0.048
[7,   900] loss: 0.044
Accuracy on test set: 98 % [9845/10000]
[8,   300] loss: 0.044
[8,   600] loss: 0.041
[8,   900] loss: 0.042
Accuracy on test set: 98 % [9883/10000]
[9,   300] loss: 0.040
[9,   600] loss: 0.039
[9,   900] loss: 0.041
Accuracy on test set: 98 % [9867/10000]
[10,   300] loss: 0.038
[10,   600] loss: 0.036
[10,   900] loss: 0.038
Accuracy on test set: 98 % [9872/10000]

4.4 课后作业(尝试更复杂的CNN)

在这里插入图片描述

PyTorch-GPU代码实现:

除了上图所示的改变外,我还做了以下2点改变:

  • 为了获得更多的特征。增加了每个层的信道数量
  • 为了获得更多的特征,并考虑到计算量开销,采取了卷积核大小逐层递减的策略,第一层卷积核大小设置为(9,9),第二层卷积核大小设置为(7,7),第三层卷积核大小设置为(5,5),为了保证足够多的特征数量,每一层都采用了padding
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optimclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 20, padding=(4, 4), kernel_size=(9, 9))self.conv2 = torch.nn.Conv2d(20, 40, padding=(3, 3), kernel_size=(7, 7))self.conv3 = torch.nn.Conv2d(40, 60, padding=(2, 2), kernel_size=(5, 5))self.pooling = torch.nn.MaxPool2d((2, 2))self.fc1 = torch.nn.Linear(540, 256)self.fc2 = torch.nn.Linear(256, 10)def forward(self, x):batch_size = x.size(0)x = torch.relu(self.pooling(self.conv1(x)))x = torch.relu(self.pooling(self.conv2(x)))x = torch.relu(self.pooling(self.conv3(x)))x = x.view(batch_size, -1)x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 单次训练函数
def train(epoch, criterion):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = data# 将inputs, target转移到Gpu或者Cpu上inputs, target = inputs.to(device), target.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0# 单次测试函数
def ttt():correct = 0.0total = 0.0with torch.no_grad():for data in test_loader:images, labels = data# 将images, labels转移到Gpu或者Cpu上images, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))if __name__ == '__main__':batch_size = 64transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 声明模型model = Net()# 将模型转移道Gpu或者Cpu上model.to(device)# 定义损失函数criterion = torch.nn.CrossEntropyLoss()# 定义优化器optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)for epoch in range(10):train(epoch, criterion)ttt()

输出:

[1,   300] loss: 1.350
[1,   600] loss: 0.215
[1,   900] loss: 0.139
Accuracy on test set: 96 % [9684/10000]
[2,   300] loss: 0.103
[2,   600] loss: 0.090
[2,   900] loss: 0.079
Accuracy on test set: 98 % [9800/10000]
[3,   300] loss: 0.070
[3,   600] loss: 0.064
[3,   900] loss: 0.060
Accuracy on test set: 98 % [9856/10000]
[4,   300] loss: 0.048
[4,   600] loss: 0.053
[4,   900] loss: 0.051
Accuracy on test set: 98 % [9833/10000]
[5,   300] loss: 0.044
[5,   600] loss: 0.040
[5,   900] loss: 0.041
Accuracy on test set: 98 % [9850/10000]
[6,   300] loss: 0.032
[6,   600] loss: 0.039
[6,   900] loss: 0.036
Accuracy on test set: 98 % [9889/10000]
[7,   300] loss: 0.027
[7,   600] loss: 0.033
[7,   900] loss: 0.031
Accuracy on test set: 99 % [9906/10000]
[8,   300] loss: 0.023
[8,   600] loss: 0.028
[8,   900] loss: 0.027
Accuracy on test set: 99 % [9903/10000]
[9,   300] loss: 0.022
[9,   600] loss: 0.025
[9,   900] loss: 0.023
Accuracy on test set: 98 % [9873/10000]
[10,   300] loss: 0.020
[10,   600] loss: 0.019
[10,   900] loss: 0.021
Accuracy on test set: 99 % [9910/10000]

从输出结果可以看出,正确率从之前的98%提升至了99%,说明本节建立的三层CNN模型比之前的两层CNN模型具有更好的特征提取能力和分类能力。

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...