信号与系统1——Signals and Systems
创始人
2024-02-21 12:49:59
0

信号与系统1——Signals and Systems

  • 一、Introduction
    • 1. Signals and Systems信号与系统
      • (1) Signal信号
      • (2) System系统
    • 2. Classification of Signals信号的分类
      • (1) Continuous-time & discrete-time
        • 1) Continuous-Time signal连续时间信号
        • 2) Discrete-Time signal离散时间信号
        • 3) Relationship关系
      • (2) Even and odd signals偶奇信号
        • 1) Even signals (偶信号)
        • 2) Odd signals (奇信号)
        • 3) Even-odd decomposition of x(t)奇偶分量
        • 4) PRODUCT Rule
    • 3. Operation on Signals信号运算
      • (1) In Time Domain时域
        • 1) Time Scaling时间展缩
        • 2) Time Reflection时间反转
        • 3) Time Shifting时移
      • (2) In Amplitude幅度
        • 1) Amplitude scaling幅度缩放
        • 2) Addition加
        • 3) Multiplication乘
        • 4) Differentiation 微分
        • 5) Integration 积分
      • (3) Precedence Rule步骤
        • 1)f(t)→\rightarrow→f(α\alphaαt+β\betaβ)
        • 2)f(α\alphaαt+β\betaβ)→\rightarrow→f(t)
  • 二、Basic Time Signals基本时间信号
    • 1. Exponential Signals指数信号
      • (1) Continuous-time
      • (2) Discrete-time
    • 2. Sinusoidal Signals正弦信号
      • (1) Continuous-time
      • (2) Discrete-time
      • (3) Relation Between Sinusoidal and Complex Exponential Signals
        • 1) Complex exponential signal
        • 2) Discrete-time case
        • 3) Two-dimensional representation of the complex exponential e^jΩn^ for Ω = Π/4 and n = 0, 1...
      • (4) Exponential Damped (衰减) Sinusoidal Signals
    • 3. Step Functions阶跃信号
      • (1) Continuous-time
      • (2) Discrete-time
      • (3) Properties
        • 1) 相乘特性(单边特性)
        • 2) 表示作用区间
          • a. f(t)[u(t-t1t_1t1​)-u(t-t2t_2t2​)]
          • b. 加减
        • 3) 积分
    • 4. Impulse Functions冲激信号
      • (1) Discrete-time
      • (2) Continuous-time
      • (3) Properties of impulse function
        • 1) Even function偶函数
        • 2) Sifting property时移特性
        • 3) Time-scaling property展缩特性
        • 4) Sampling property取样特性
        • 5) 相乘特性
        • 6) Derivatives
        • 7) 与u(t)的关系
  • 三、Systems Classification and Properties系统分类和性质
    • 1. System Representation
    • 2. Continuous-time and Discrete-time Systems
      • (1) Continuous-time
      • (2) Discrete-time
      • (3) Moving-average system
      • (4) Representation of discrete-time operations
    • 3. Systems with and without memory
      • (1) without memory
      • (2) with memory
    • 4. Causal and Non-causal systems
      • (1) Causal
      • (2) Non-causal
    • 5. Linear and Nonlinear systems
      • (1) Linear
      • (2) Nonlinear
    • 6. Time-variant and Time-invariant Systems
      • (1) Time-invariant
      • (2) Condition for time-invariant system
    • 7. Stable systems
    • 8. Feedback systems
    • 9. Invertibility(可逆性) systems
      • (1) Continuous-time system
      • (2) Output of the second system
      • (3) Condition for invertible system

一、Introduction

1. Signals and Systems信号与系统

(1) Signal信号

A signal is formally defined as a function of one or more variables that conveys information on the
nature of a physical phenomenon.

(2) System系统

A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals.

在这里插入图片描述

在这里插入图片描述

2. Classification of Signals信号的分类

(1) Continuous-time & discrete-time

1) Continuous-Time signal连续时间信号

A continuous-time signal is defined for all time t, except at some discontinuous point.

2) Discrete-Time signal离散时间信号

A continuous-time signal is defined only at discrete instants of time.
在这里插入图片描述

3) Relationship关系

· A discrete-time signal is often derived from a continuous-time signal by sampling (抽样) it at a uniform rate (nT)

x[n]= x(t)∣t=nTx(t)|_{t=nT}x(t)∣t=nT​=x(nT)
T: sampling period, n: an integer
Continuous-time signals: x(t)
Discrete-time signals: x[n]=x(nTsT_sTs​), n=0, ±\pm± 1, ±\pm± 2, …\ldots…

(2) Even and odd signals偶奇信号

1) Even signals (偶信号)

Symmetric about vertical axis: x (-t) = x (t), x [-n] = x [n] for all t

2) Odd signals (奇信号)

Antisymmetric about origin: x (-t) = - x (t), x [-n] = x [n] for all t

3) Even-odd decomposition of x(t)奇偶分量

x (t)=xex_exe​(t)+xox_oxo​(t) where xex_exe​(-t) = xex_exe​(t), xox_oxo​(-t) = -xox_oxo​(t)
→\rightarrow→ xex_exe​(t)=12\frac{1}{2}21​[x(t)+x(-t)]
→\rightarrow→ xox_oxo​(t)=12\frac{1}{2}21​[x(t)-x(-t)]

4) PRODUCT Rule

ODD ×\times× ODD →\rightarrow→ EVEN
EVEN ×\times× EVEN →\rightarrow→ EVEN
EVEN ×\times× ODD →\rightarrow→ ODD
ODD ×\times× EVEN →\rightarrow→ ODD

∫−TTx(t)dt\int_{-T}^Tx(t)dt∫−TT​x(t)dt=0 always of x(t) is ODD
=0 sometimes if x(t) is EVEN
∫−TTx(t)dt\int_{-T}^Tx(t)dt∫−TT​x(t)dt=2∫0Tx(t)dt\int_{0}^Tx(t)dt∫0T​x(t)dt for x(t) EVEN

3. Operation on Signals信号运算

(1) In Time Domain时域

1) Time Scaling时间展缩

y(t) = x (at) →\rightarrow→ a>1, compressed; 0 y[n] =x [kn] , k>0, k is an integer→\rightarrow→some values lost

2) Time Reflection时间反转

y(t)=x(-t)→\rightarrow→The signal y(t) represents a reflected version of x(t) about t=0

3) Time Shifting时移

y(t)=x(t-t0t_0t0​) →\rightarrow→ t0t_0t0​>0, 右移(shift towards right) ;t0t_0t0​<0, 左移(shift towards left)
y[n]=x[n-m] →\rightarrow→ m>0, 右移(shift towards right) ;m<0, 左移(shift towards left)

(2) In Amplitude幅度

1) Amplitude scaling幅度缩放

x(t) →\rightarrow→ y(t)=cx(t)
x[n] →\rightarrow→ y[n]=cx[n]

2) Addition加

y(t) = x1x_1x1​(t) + x2x_2x2​(t)
y[n] = x1x_1x1​[n] + x2x_2x2​[n]

3) Multiplication乘

y(t) = x1x_1x1​(t) x2x_2x2​(t)
y[n] = x1x_1x1​[n] x2x_2x2​[n]

4) Differentiation 微分

y(t) = ddt\frac{d}{dt}dtd​x(t)

5) Integration 积分

y(t) =∫−∞tx(τ)dτ\int_{-∞}^tx(τ)dτ∫−∞t​x(τ)dτ

(3) Precedence Rule步骤

1)f(t)→\rightarrow→f(α\alphaαt+β\betaβ)

f(t)→\rightarrow→f(t+β\betaβ)→\rightarrow→f(α\alphaαt+β\betaβ) →\rightarrow→ f(-α\alphaαt+β\betaβ)
平移 →\rightarrow→ 展缩 →\rightarrow→ 反转

2)f(α\alphaαt+β\betaβ)→\rightarrow→f(t)

f(- α\alphaαt +β\betaβ) →\rightarrow→ f(α\alphaαt+β\betaβ) →\rightarrow→ f(t+β\betaβ) →\rightarrow→ f(t)
反转 →\rightarrow→ 展缩 →\rightarrow→ 平移

二、Basic Time Signals基本时间信号

1. Exponential Signals指数信号

(1) Continuous-time

x(t) = Beαt, B and a are real parameters
a. Decaying exponential, for which α < 0
b. Growing exponential, for which α > 0
在这里插入图片描述

(2) Discrete-time

x[n]=Brn , r=e α
a. Decaying exponential, for which α < 0
b. Growing exponential, for which α > 0
在这里插入图片描述

2. Sinusoidal Signals正弦信号

(1) Continuous-time

x (t)=A cos (ωt+φ), T=2Πω\frac{2Π}{ω}ω2Π​
x (t +T) = x(t)

(2) Discrete-time

x [n] =A cos (Ωn+φ)
Periodic condition: x [n + N] =A cos (Ωn+ΩN+φ)
→\rightarrow→ ΩN=2Πm or Ω=2Πmω\frac{2Πm}{ω}ω2Πm​

(3) Relation Between Sinusoidal and Complex Exponential Signals

1) Complex exponential signal

Euler’s identity:e=cosθ+jsinθ
Complex exponential signal: Bejωt= A eejωt=A cos (ωt+φ)+j Asin (ωt+φ)
A cos (ωt+φ)= Re {Bejωt}
A sin (ωt+φ) = Im {Bejωt}

2) Discrete-time case

A cos (Ωn+φ) = Re {BejΩn}
A sin (Ωn+φ) = Im {BejΩn}

3) Two-dimensional representation of the complex exponential ejΩn for Ω = Π/4 and n = 0, 1…

在这里插入图片描述

(4) Exponential Damped (衰减) Sinusoidal Signals

x(t)= A e-αt sin (ωt+φ), α>0
在这里插入图片描述

3. Step Functions阶跃信号

(1) Continuous-time

在这里插入图片描述

(2) Discrete-time

在这里插入图片描述

(3) Properties

1) 相乘特性(单边特性)

x(t)u(t)= { x(t) ,t>00,t<0

2) 表示作用区间

a. f(t)[u(t-t1t_1t1​)-u(t-t2t_2t2​)]

Rectangular pulse脉冲信号:p(t)=u(t+12\frac{1}{2}21​)-u(t-12\frac{1}{2}21​)

在这里插入图片描述

b. 加减
sgn(t) function符号函数
sgn(t)={1,t>0-1, t<0=u(t)-u(-t)

3) 积分

y(t) =∫−∞tu(τ)dτ\int_{-∞}^tu(τ)dτ∫−∞t​u(τ)dτ=tu(t)=r(t)→\rightarrow→ 斜坡信号

4. Impulse Functions冲激信号

(1) Discrete-time

 [n]=1, n=0; 0, n≠0

(2) Continuous-time

δ\deltaδ(t)=0 for t ≠0
∫−∞∞δ(t)dt\int_{-∞}^∞δ(t)dt∫−∞∞​δ(t)dt=1

(3) Properties of impulse function

1) Even function偶函数

δ\deltaδ(-t)=δ\deltaδ(t)

2) Sifting property时移特性

δ\deltaδ(t-t0t_0t0​) = 0, t ≠ t0t_0t0​
∫−∞∞δ(t−to)dt\int_{-∞}^∞δ(t-to)dt∫−∞∞​δ(t−to)dt=1

3) Time-scaling property展缩特性

δ\deltaδ(at+b)=1a\frac{1}{a}a1​δ\deltaδ(t+ba\frac{b}{a}ab​)

4) Sampling property取样特性

∫−∞∞x(τ)δ(t)dt\int_{-∞}^∞x(τ)δ(t)dt∫−∞∞​x(τ)δ(t)dt=x(0)

x(t)*δ\deltaδ(t-t0t_0t0​)=∫−∞∞x(t)δ(t−to)dt\int_{-∞}^∞x(t)δ(t-to)dt∫−∞∞​x(t)δ(t−to)dt=x(t0t_0t0​)

x(t)δ(t−to)x(t)δ(t-to)x(t)δ(t−to)=x(t0t_0t0​)δ\deltaδ(t-t0t_0t0​)

∑i=−∞∞\sum_{i=-∞}^∞∑i=−∞∞​x(t) δ\deltaδ(k)= x (0)

5) 相乘特性

x(t)δ(t)x(t)δ(t)x(t)δ(t)=x(0)δ(t)x(0)δ(t)x(0)δ(t)
x(t)δ(t−to)x(t)δ(t-to)x(t)δ(t−to)=x(to)δ(t−to)x(to)δ(t-to)x(to)δ(t−to)

6) Derivatives

在这里插入图片描述

7) 与u(t)的关系

δ(t) is the derivative of u(t): δ(t)=ddtu(t)\frac{d}{dt}u(t)dtd​u(t)

u(t) is the integral of δ(t): u(t) =∫−∞tδ(τ)dτ\int_{-∞}^tδ(τ)dτ∫−∞t​δ(τ)dτ

u[n] = δ[n]+δ[n-1]+…=∑i=0∞\sum_{i=0}^∞∑i=0∞​ δ\deltaδ[n-k]=∑i=−∞n\sum_{i=-∞}^n∑i=−∞n​ δ\deltaδ[m]

δ[n]=u[n]-u[n-1]

三、Systems Classification and Properties系统分类和性质

1. System Representation

在这里插入图片描述

2. Continuous-time and Discrete-time Systems

(1) Continuous-time

y(t)=H{x(t)}

(2) Discrete-time

y[n]=H{x[n]}
在这里插入图片描述

(3) Moving-average system

在这里插入图片描述
在这里插入图片描述

(4) Representation of discrete-time operations

在这里插入图片描述

3. Systems with and without memory

(1) without memory

A system is said to be memoryless if the output at any time depends on only the input at that same time.

(2) with memory

A system is said to be memory if the output at any time depends on only the input at past or in the future.

4. Causal and Non-causal systems

(1) Causal

A system is said to be causal if its present value of the output signal depends only on the present or past values of the input signal.

(2) Non-causal

A system is said to be noncausal if its output signal depends on one or more future values of the input signal.

5. Linear and Nonlinear systems

(1) Linear

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2) Nonlinear

6. Time-variant and Time-invariant Systems

(1) Time-invariant

在这里插入图片描述

(2) Condition for time-invariant system

在这里插入图片描述

7. Stable systems

A system is bounded-input/bounded-output (BIBO,有界输入有界输出) stable if for any bounded input x defined by |x|≤ k1k_1k1​
The corresponding output y is also bounded defined by |y|≤ k2k_2k2​ where k1k_1k1​ and k2k_2k2​ are finite real constants

8. Feedback systems

在这里插入图片描述

9. Invertibility(可逆性) systems

(1) Continuous-time system

x(t) = input; y(t) = output
H = first system operator; H inv_{inv}inv​ = second system operator

(2) Output of the second system

在这里插入图片描述
H inv_{inv}inv​=inverse operator

(3) Condition for invertible system

H inv_{inv}inv​ H= I
I = identity operator (单位算符)

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...