机器学习笔记 十八:基于3种方法的随机森林模型分析房屋参数重要性
创始人
2024-04-07 08:25:46
0

这里写自定义目录标题

      • 1. 探索性数据分析
        • 1.1 数据集分割(训练集、测试集)
        • 1.2 模型拟合
      • 2. 特征重要性比较
        • 2.1 Gini Importance
        • 2.2 Permutation Importance
        • 2.3 Boruta
      • 3. 特征比较
        • 3.1 Gini Importance
        • 3.2 Permutation Importance
        • 3.3 Boruta
      • 4. 模型比较

将机器学习笔记 十六:基于Boruta算法的随机森林(RF)特征重要性评估与本篇结合,对比分析。

1. 探索性数据分析

输入参数: id、date、bedrooms、bathrooms、sqft_living、sqft_lot、floors、waterfront、view、condition、grade、sqft_above、sqft_basement、yr_built、yr_renovated、zipcode、lat、long、sqft_living15、sqft_lot15、
输出参数: price

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import accuracy_score
from collections import defaultdict
from sklearn.metrics import r2_scoreimport syssys.path.insert(0, 'boruta_py-master/boruta')
from boruta import BorutaPysys.path.insert(0, 'random-forest-importances-master/src')
from rfpimp import *%matplotlib inlinehouse = pd.read_csv("C:/Users/Administrator/Desktop/kc_house_data.csv")
# 查看数据是否有空
print(house.isnull().any())
# 检查类型
print(house.dtypes)
# 删除id和date两列数据,因为他们不会使用
house = house.drop(['id', 'date'],axis=1)

用散点图展示数据之间的相关性:

with sns.plotting_context("notebook",font_scale=2.5):g = sns.pairplot(house[['sqft_lot','sqft_above','price','sqft_living','bedrooms']], hue='bedrooms', palette='tab20',size=6)
g.set(xticklabels=[]);

在这里插入图片描述
绘制参数热图(相关性分析):

corr = house.corr()mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = Truef, ax = plt.subplots(figsize=(10, 8))
cmap = sns.diverging_palette(220, 10, as_cmap=True)sns.heatmap(corr, mask=mask, cmap=cmap, center=0,square=True, linewidths=0.5)

在这里插入图片描述

1.1 数据集分割(训练集、测试集)

df_train, df_test = train_test_split(house, test_size=0.20,random_state=42)
df_train = df_train[list(house.columns)]
df_test = df_test[list(house.columns)]X_train, y_train = df_train.drop('price',axis=1), df_train['price']
X_test, y_test = df_test.drop('price',axis=1), df_test['price']X_train.shape,y_train.shape,X_test.shape,y_test.shape

((17290, 18), (17290,), (4323, 18), (4323,))

1.2 模型拟合

def predictions (rf,X_test,y_test):# Make predictions on test datapredictions = rf.predict(X_test)# Performance metricserrors = abs(predictions - y_test)print('Metrics for Random Forest Regressor')print('Average absolute error:', round(np.mean(errors), 2), 'degrees.')# Calculate mean absolute percentage error (MAPE)mape = np.mean(100 * (errors / y_test))# Compare to baselinebaseline_mape=np.mean(y_test)improvement_baseline = 100 * abs(mape - baseline_mape) / baseline_mapeprint('Improvement over baseline:', round(improvement_baseline, 2), '%.')# Calculate and display accuracyaccuracy = 100 - mapeprint('Accuracy:', round(accuracy, 2), '%.')print('R2 score:',r2_score(predictions,y_test))
rf_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_reg.fit(X_train, y_train)predictions(rf_reg,X_test,y_test)

Metrics for Random Forest Regressor
Average absolute error: 72704.15 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.88 %.
R2 score: 0.8381720745711922

2. 特征重要性比较

2.1 Gini Importance

features = np.array(X_train.columns)
imps_gini=rf_reg.feature_importances_
std_gini = np.std([tree.feature_importances_ for tree in rf_reg.estimators_],axis=0)
indices_gini = np.argsort(imps_gini)plt.title('Feature Importances')
plt.barh(range(len(indices_gini)), imps_gini[indices_gini], yerr=std_gini[indices_gini],color='black', align='center')
plt.yticks(range(len(indices_gini)), features[indices_gini])
plt.xlabel('Gini Importance')
plt.show()

在这里插入图片描述

2.2 Permutation Importance

def permutation_importances(rf, X_train, y_train, metric):baseline = metric(rf, X_train, y_train)imp = []std = []for col in X_train.columns:tmp=[]for i in range(10):save = X_train[col].copy()X_train[col] = np.random.permutation(X_train[col]) # permutation():按照给定列表生成一个打乱后的随机列表m = metric(rf, X_train, y_train)X_train[col] = savetmp.append(m)imp.append(baseline - np.mean(tmp))std.append(np.std(tmp))return np.array(imp),np.array(std)
np.random.seed(10)
imps_perm, std_perm = permutation_importances(rf_reg, X_train, y_train,oob_regression_r2_score)features = np.array(X_train.columns)
indices_perm = np.argsort(imps_perm)plt.title('Feature Importances')
plt.barh(range(len(indices_perm)), imps_perm[indices_perm], yerr=std_perm[indices_perm],color='black', align='center')
plt.yticks(range(len(indices_perm)), features[indices_perm])
plt.xlabel('Permutation Importance')
plt.show()

在这里插入图片描述
可以看出lat的重要性升高

2.3 Boruta

forest_reg = RandomForestRegressor(min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
feat_selector_reg = BorutaPy(forest_reg, verbose=2,max_iter=50)
np.random.seed(10)import time
start = time.time()
feat_selector_reg.fit(X_train.values, y_train.values)
end = time.time()
print(end - start)

Iteration: 1 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 2 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 3 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 4 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 5 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 6 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 7 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 8 / 50
Confirmed: 13
Tentative: 0
Rejected: 5

BorutaPy finished running.
Iteration: 9 / 50
Confirmed: 13
Tentative: 0
Rejected: 5
837.3257942199707

print('Confirmed: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==1]))
print('\nTentatives: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==2]))
print('\nRejected: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_>=3]))

Confirmed:
[‘bathrooms’, ‘sqft_living’, ‘sqft_lot’, ‘waterfront’, ‘view’, ‘grade’, ‘sqft_above’, ‘yr_built’, ‘zipcode’, ‘lat’, ‘long’, ‘sqft_living15’, ‘sqft_lot15’]

Tentatives:
[‘sqft_basement’]

Rejected:
[‘bedrooms’, ‘floors’, ‘condition’, ‘yr_renovated’]


3. 特征比较

3.1 Gini Importance

X_train_gini_reg=X_train[['grade','sqft_living','lat','long']]
X_test_gini_reg=X_test[['grade','sqft_living','lat','long']]rf_gini_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_gini_reg.fit(X_train_gini_reg, y_train)

3.2 Permutation Importance

X_train_perm_reg=X_train.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)
X_test_perm_reg=X_test.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)rf_perm_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_perm_reg.fit(X_train_perm_reg, y_train)

3.3 Boruta

X_train_boruta_reg=X_train.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)
X_test_boruta_reg=X_test.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)rf_boruta_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_boruta_reg.fit(X_train_boruta_reg, y_train)

4. 模型比较

print('******************* Original Model ***********************')
print('\n')
predictions(rf_reg,X_test,y_test)print ('\n')print('**** Feature selection based on Gini Importance ****')
print('\n')
predictions(rf_gini_reg,X_test_gini_reg,y_test)print ('\n')print('**** Feature selection based on Permutation Importance *****')
print('\n')
predictions(rf_perm_reg,X_test_perm_reg,y_test)print ('\n')print('*********** Feature selection based on Boruta **************')
print('\n')
predictions(rf_boruta_reg,X_test_boruta_reg,y_test)

******************* Original Model ***********************

Metrics for Random Forest Regressor
Average absolute error: 72704.15 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.88 %.
R2 score: 0.8381720745711922

**** Feature selection based on Gini Importance ****

Metrics for Random Forest Regressor
Average absolute error: 81288.41 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 85.56 %.
R2 score: 0.8052584664901095

**** Feature selection based on Permutation Importance *****

Metrics for Random Forest Regressor
Average absolute error: 72741.67 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.77 %.
R2 score: 0.8477802122659206

*********** Feature selection based on Boruta **************

Metrics for Random Forest Regressor
Average absolute error: 73254.05 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.75 %.
R2 score: 0.8388239891237698

Permutation Importance对于R2的计算是比较好的模型,Permutation Importance和Boruta都是比较好的方法。

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...