单片机毕业设计 stm32室内环境温湿度检测系统
创始人
2024-04-06 22:05:12
0

文章目录

  • 0 简介
  • 1 项目介绍
  • 2 硬件说明
    • 2.1 AB32VG1单片机
    • 2.2 DHT22数字温湿度传感器
  • 3 代码实现
  • 4 实现效果


0 简介

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 基于单片机的室内环境温湿度检测系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://blog.csdn.net/molodi/article/details/125933857

在这里插入图片描述


1 项目介绍

本设计基于中科蓝讯的AB32VG1开发板, 通过DHT22检测室内环境,当温度或湿度高于设定值或低于设定值,就会发出警报,通过屏幕显示出当前室内的温度值。

只作为毕设开发的一个小功能,一般不能作为一个毕业设计

2 硬件说明

2.1 AB32VG1单片机

AB32VG1主频 120M ,片上集成 RAM 192K, Flash 4Mbit,ADC,PWM,USB,UART,IIC 等资源。提供SDK,驱动齐全,支持RT-Thread Studio 开发应用,图形化配置系统,一键开启外设,一键使用软件包,强大的自动代码编辑辅助。

2.2 DHT22数字温湿度传感器

DHT22数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性和卓越的长期稳定性。DHT11是一款温湿度传感器。 其测量精度为:湿度±5%RH, 温度±2℃,量程为:湿度20-90%RH, 温度0~50℃,采样周期大于等于1秒/次。传感器包括一个电阻式感湿元件和一个NTC测温元件,并连接一个高性能8位单片机相。DHT11的优点有:品质高、响应快、抗干扰能力强、性价比极高、体积小、功耗低等。

3 代码实现

#include #include "dhtxx.h"#define DBG_TAG                  "sensor.asair.dhtxx"#ifdef PKG_USING_DHTXX_DEBUG#define DBG_LVL                  DBG_LOG#else#define DBG_LVL                  DBG_ERROR#endif#include /* timing */#define DHT1x_BEGIN_TIME         20  /* ms */#define DHT2x_BEGIN_TIME         1   /* ms */#define DHTxx_PULL_TIME          30  /* us */#define DHTxx_REPLY_TIME         100 /* us */#define MEASURE_TIME             40  /* us *//*** This function will split a number into two part according to times.** @param num      the number will be split* @param integer  the integer part* @param decimal  the decimal part* @param times    how many times of the real number (you should use 10 in this case)** @return 0 if num is positive, 1 if num is negative*/int split_int(const int num, int *integer, int *decimal, const rt_uint32_t times){int flag = 0;if (num < 0) flag = 1;int anum = num<0 ? -num : num;*integer = anum / times;*decimal = anum % times;return flag;}/*** This function will convert temperature in degree Celsius to Kelvin.** @param c  the temperature indicated by degree Celsius** @return the result*/float convert_c2k(float c){return c + 273.15;}/*** This function will convert temperature in degree Celsius to Fahrenheit.** @param c  the temperature indicated by degree Celsius** @return the result*/float convert_c2f(float c){return c * 1.8 + 32;}/*** This function will convert temperature in degree Fahrenheit to Celsius.** @param f  the temperature indicated by degree Fahrenheit** @return the result*/float convert_f2c(float f){return (f - 32) * 0.55555;}/*** This function will read a bit from sensor.** @param pin  the pin of Dout** @return the bit value*/static uint8_t dht_read_bit(const rt_base_t pin){uint8_t retry = 0;while(rt_pin_read(pin) && retry < DHTxx_REPLY_TIME){retry++;rt_hw_us_delay(1);}retry = 0;while(!rt_pin_read(pin) && retry < DHTxx_REPLY_TIME){retry++;rt_hw_us_delay(1);}rt_hw_us_delay(MEASURE_TIME);return rt_pin_read(pin);}/*** This function will read a byte from sensor.** @param pin  the pin of Dout** @return the byte*/static uint8_t dht_read_byte(const rt_base_t pin){uint8_t i, byte = 0;for(i=0; i<8; i++){byte <<= 1;byte |= dht_read_bit(pin);}return byte;}/*** This function will read and update data array.** @param dev  the device to be operated** @return RT_TRUE if read successfully, otherwise return RT_FALSE.*/rt_bool_t dht_read(dht_device_t dev){RT_ASSERT(dev);uint8_t i, retry = 0, sum = 0;#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLErt_base_t level;#endif/* Reset data buffer */rt_memset(dev->data, 0, DHT_DATA_SIZE);/* MCU request sampling */rt_pin_mode(dev->pin, PIN_MODE_OUTPUT);rt_pin_write(dev->pin, PIN_LOW);if (dev->type == DHT11 || dev->type == DHT12) {rt_thread_mdelay(DHT1x_BEGIN_TIME);        /* Tbe */} else {rt_thread_mdelay(DHT2x_BEGIN_TIME);}#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLElevel = rt_hw_interrupt_disable();#endifrt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);rt_hw_us_delay(DHTxx_PULL_TIME);               /* Tgo *//* Waiting for sensor reply */while (rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME){retry++;rt_hw_us_delay(1);                         /* Trel */}if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;retry = 0;while (!rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME){retry++;rt_hw_us_delay(1);                         /* Treh */};if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;/* Read data */for(i=0; idev->data[i] = dht_read_byte(dev->pin);}#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLErt_hw_interrupt_enable(level);#endif/* Checksum */for(i=0; isum += dev->data[i];}if(sum != dev->data[4]) return RT_FALSE;return RT_TRUE;}/*** This function will get the humidity from dhtxx sensor.** @param dev  the device to be operated** @return the humidity value*/rt_int32_t dht_get_humidity(dht_device_t const dev){RT_ASSERT(dev);rt_int32_t humi = 0;switch(dev->type){case DHT11:case DHT12:humi = dev->data[0] * 10 + dev->data[1];break;case DHT21:case DHT22:humi = (dev->data[0] << 8) + dev->data[1];break;default:break;}return humi;}/*** This function will get the temperature from dhtxx sensor.** @param dev  the device to be operated** @return the temperature value*/rt_int32_t dht_get_temperature(dht_device_t const dev){RT_ASSERT(dev);rt_int32_t temp = 0;switch(dev->type){case DHT11:case DHT12:temp = dev->data[2] * 10 + (dev->data[3] & 0x7f);if(dev->data[3] & 0x80) {temp = -temp;}break;case DHT21:case DHT22:temp = ((dev->data[2] & 0x7f) << 8) + dev->data[3];if(dev->data[2] & 0x80) {temp = -temp;}break;default:break;}return temp;}/*** This function will init dhtxx sensor device.** @param dev  the device to init* @param pin  the pin of Dout** @return the device handler*/rt_err_t dht_init(struct dht_device *dev, const rt_base_t pin){if(dev == NULL)return -RT_ERROR;dev->type = DHT_TYPE;dev->pin  = pin;rt_memset(dev->data, 0, DHT_DATA_SIZE);rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);return RT_EOK;}dht_device_t dht_create(const rt_base_t pin){dht_device_t dev;dev = rt_calloc(1, sizeof(struct dht_device));if (dev == RT_NULL){LOG_E("Can't allocate memory for dhtxx device");return RT_NULL;}dev->type = DHT_TYPE;dev->pin  = pin;rt_memset(dev->data, 0, DHT_DATA_SIZE);rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);return dev;}void dht_delete(dht_device_t dev){if (dev)rt_free(dev);}#include #include #include #include "dhtxx.h"#define DATA_PIN                 PKG_USING_DHTXX_SAMPLE_PIN/* cat_dhtxx sensor data by dynamic */static void cat_dhtxx(void){dht_device_t sensor = dht_create(DATA_PIN);if(dht_read(sensor)) {rt_int32_t temp = dht_get_temperature(sensor);rt_int32_t humi = dht_get_humidity(sensor);rt_kprintf("Temp: %d, Humi: %d\n", temp, humi);}else {rt_kprintf("Read dht sensor failed.\n");}dht_delete(sensor);}#ifdef FINSH_USING_MSHMSH_CMD_EXPORT(cat_dhtxx, read dhtxx humidity and temperature);#endif#ifndef __DHTXX_H__#define __DHTXX_H__#include #include #include #define DHTLIB_VERSION                       "0.9.0"#define DHT_DATA_SIZE                        5/* sensor model type */#define DHT11                                0#define DHT12                                1#define DHT21                                2#define DHT22                                3#define AM2301                               DHT21#define AM2302                               DHT22#define AM2320                               DHT22#if defined(PKG_USING_DHTXX_TYPE_DHT11)#define DHT_TYPE                             DHT11#elif defined(PKG_USING_DHTXX_TYPE_DHT12)#define DHT_TYPE                             DHT12#elif defined(PKG_USING_DHTXX_TYPE_DHT21)#define DHT_TYPE                             DHT21#elif defined(PKG_USING_DHTXX_TYPE_DHT22)#define DHT_TYPE                             DHT22#endifstruct dht_device{rt_base_t   pin;rt_uint8_t  type;rt_uint8_t  data[DHT_DATA_SIZE];rt_mutex_t  lock;};typedef struct dht_device *dht_device_t;dht_device_t dht_create(const rt_base_t pin);void dht_delete(dht_device_t dev);rt_err_t   dht_init(struct dht_device *dev, const rt_base_t pin);rt_bool_t  dht_read(dht_device_t dev);rt_int32_t dht_get_humidity(dht_device_t dev);rt_int32_t dht_get_temperature(dht_device_t dev);float convert_c2k(float c);float convert_c2f(float c);float convert_f2c(float f);rt_int32_t split_int(const rt_int32_t num, rt_int32_t *integer, rt_int32_t *decimal, const rt_uint32_t times);rt_err_t rt_hw_dht_init(const char *name, struct rt_sensor_config *cfg);#endif /* __DHTXX_H__ */#include "oled.h"#include "oledfont.h"u8 OLED_GRAM[144][8];struct OLED_sss{uint8_t OLED_SCLK;uint8_t OLED_SDIN;uint8_t OLED_RST;uint8_t OLED_DC;uint8_t OLED_CS;};struct OLED_sss oled_ccc;//反显函数void OLED_ColorTurn(u8 i){if(i==0){OLED_WR_Byte(0xA6,OLED_CMD);//正常显示}if(i==1){OLED_WR_Byte(0xA7,OLED_CMD);//反色显示}}//屏幕旋转180度void OLED_DisplayTurn(u8 i){if(i==0){OLED_WR_Byte(0xC8,OLED_CMD);//正常显示OLED_WR_Byte(0xA1,OLED_CMD);}if(i==1){OLED_WR_Byte(0xC0,OLED_CMD);//反转显示OLED_WR_Byte(0xA0,OLED_CMD);}}void OLED_WR_Byte(u8 dat,u8 cmd){u8 i;if(cmd)OLED_DC_Set();elseOLED_DC_Clr();OLED_CS_Clr();for(i=0;i<8;i++){OLED_SCLK_Clr();if(dat&0x80)OLED_SDIN_Set();elseOLED_SDIN_Clr();OLED_SCLK_Set();dat<<=1;}OLED_CS_Set();OLED_DC_Set();}//开启OLED显示void OLED_DisPlay_On(void){OLED_WR_Byte(0x8D,OLED_CMD);//电荷泵使能OLED_WR_Byte(0x14,OLED_CMD);//开启电荷泵OLED_WR_Byte(0xAF,OLED_CMD);//点亮屏幕}//关闭OLED显示void OLED_DisPlay_Off(void){OLED_WR_Byte(0x8D,OLED_CMD);//电荷泵使能OLED_WR_Byte(0x10,OLED_CMD);//关闭电荷泵OLED_WR_Byte(0xAF,OLED_CMD);//关闭屏幕}//更新显存到OLEDvoid OLED_Refresh(void){u8 i,n;for(i=0;i<8;i++){OLED_WR_Byte(0xb0+i,OLED_CMD); //设置行起始地址OLED_WR_Byte(0x00,OLED_CMD);   //设置低列起始地址OLED_WR_Byte(0x10,OLED_CMD);   //设置高列起始地址for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA);}}//清屏函数void OLED_Clear(void){u8 i,n;for(i=0;i<8;i++){for(n=0;n<128;n++){OLED_GRAM[n][i]=0;//清除所有数据}}OLED_Refresh();//更新显示}//画点//x:0~127//y:0~63void OLED_DrawPoint(u8 x,u8 y){u8 i,m,n;i=y/8;m=y%8;n=1<u8 i,m,n;i=y/8;m=y%8;n=1<u8 i,k,k1,k2,y0;if((x1<0)||(x2>128)||(y1<0)||(y2>64)||(x1>x2)||(y1>y2))return;if(x1==x2)    //画竖线{for(i=0;i<(y2-y1);i++){OLED_DrawPoint(x1,y1+i);}}else if(y1==y2)   //画横线{for(i=0;i<(x2-x1);i++){OLED_DrawPoint(x1+i,y1);}}else      //画斜线{k1=y2-y1;k2=x2-x1;k=k1*10/k2;for(i=0;i<(x2-x1);i++){OLED_DrawPoint(x1+i,y1+i*k/10);}}}//x,y:圆心坐标//r:圆的半径void OLED_DrawCircle(u8 x,u8 y,u8 r){int a, b,num;a = 0;b = r;while(2 * b * b >= r * r){OLED_DrawPoint(x + a, y - b);OLED_DrawPoint(x - a, y - b);OLED_DrawPoint(x - a, y + b);OLED_DrawPoint(x + a, y + b);OLED_DrawPoint(x + b, y + a);OLED_DrawPoint(x + b, y - a);OLED_DrawPoint(x - b, y - a);OLED_DrawPoint(x - b, y + a);a++;num = (a * a + b * b) - r*r;//计算画的点离圆心的距离if(num > 0){b--;a--;}}}//在指定位置显示一个字符,包括部分字符//x:0~127//y:0~63//size:选择字体 12/16/24//取模方式 逐列式void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size1){u8 i,m,temp,size2,chr1;u8 y0=y;size2=(size1/8+((size1%8)?1:0))*(size1/2);  //得到字体一个字符对应点阵集所占的字节数chr1=chr-' ';  //计算偏移后的值for(i=0;iif(size1==12){temp=asc2_1206[chr1][i];} //调用1206字体else if(size1==16){temp=asc2_1608[chr1][i];} //调用1608字体else if(size1==24){temp=asc2_2412[chr1][i];} //调用2412字体else return;for(m=0;m<8;m++)           //写入数据{if(temp&0x80)OLED_DrawPoint(x,y);else OLED_ClearPoint(x,y);temp<<=1;y++;if((y-y0)==size1){y=y0;x++;break;}}}}//显示字符串//x,y:起点坐标//size1:字体大小//*chr:字符串起始地址void OLED_ShowString(u8 x,u8 y,u8 *chr,u8 size1){while((*chr>=' ')&&(*chr<='~'))//判断是不是非法字符!{OLED_ShowChar(x,y,*chr,size1);x+=size1/2;if(x>128-size1)  //换行{x=0;y+=2;}chr++;}}//m^nu32 OLED_Pow(u8 m,u8 n){u32 result=1;while(n--){result*=m;}return result;}显示2个数字x,y :起点坐标len :数字的位数size:字体大小void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size1){u8 t,temp;for(t=0;ttemp=(num/OLED_Pow(10,len-t-1))%10;if(temp==0){OLED_ShowChar(x+(size1/2)*t,y,'0',size1);}else{OLED_ShowChar(x+(size1/2)*t,y,temp+'0',size1);}}}//显示汉字//x,y:起点坐标//num:汉字对应的序号//取模方式 列行式void OLED_ShowChinese(u8 x,u8 y,u8 num,u8 size1){u8 i,m,n=0,temp,chr1;u8 x0=x,y0=y;u8 size3=size1/8;while(size3--){chr1=num*size1/8+n;n++;for(i=0;iif(size1==16){temp=Hzk1[chr1][i];}//调用16*16字体else if(size1==24){temp=Hzk2[chr1][i];}//调用24*24字体else if(size1==32){temp=Hzk3[chr1][i];}//调用32*32字体else if(size1==64){temp=Hzk4[chr1][i];}//调用64*64字体else return;for(m=0;m<8;m++){if(temp&0x01)OLED_DrawPoint(x,y);else OLED_ClearPoint(x,y);temp>>=1;y++;}x++;if((x-x0)==size1){x=x0;y0=y0+8;}y=y0;}}}//num 显示汉字的个数//space 每一遍显示的间隔void OLED_ScrollDisplay(u8 num,u8 space){u8 i,n,t=0,m=0,r;while(1){if(m==0){OLED_ShowChinese(128,24,t,16); //写入一个汉字保存在OLED_GRAM[][]数组中t++;}if(t==num){for(r=0;r<16*space;r++)      //显示间隔{for(i=0;i<144;i++){for(n=0;n<8;n++){OLED_GRAM[i-1][n]=OLED_GRAM[i][n];}}OLED_Refresh();}t=0;}m++;if(m==16){m=0;}for(i=0;i<144;i++)   //实现左移{for(n=0;n<8;n++){OLED_GRAM[i-1][n]=OLED_GRAM[i][n];}}OLED_Refresh();}}//配置写入数据的起始位置void OLED_WR_BP(u8 x,u8 y){OLED_WR_Byte(0xb0+y,OLED_CMD);//设置行起始地址OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD);OLED_WR_Byte((x&0x0f),OLED_CMD);}//x0,y0:起点坐标//x1,y1:终点坐标//BMP[]:要写入的图片数组void OLED_ShowPicture(u8 x0,u8 y0,u8 x1,u8 y1,u8 BMP[]){u32 j=0;u8 x=0,y=0;if(y%8==0)y=0;else y+=1;for(y=y0;yOLED_WR_BP(x0,y);for(x=x0;xOLED_WR_Byte(BMP[j],OLED_DATA);j++;}}}//OLED的初始化void OLED_Init(void){oled_ccc.OLED_SCLK = rt_pin_get("PA.3");oled_ccc.OLED_SDIN = rt_pin_get("PA.4");oled_ccc.OLED_RST = rt_pin_get("PF.1");oled_ccc.OLED_DC = rt_pin_get("PB.0");oled_ccc.OLED_CS = rt_pin_get("PA.5");rt_pin_mode(oled_ccc.OLED_SCLK, PIN_MODE_OUTPUT);rt_pin_mode(oled_ccc.OLED_SDIN, PIN_MODE_OUTPUT);rt_pin_mode(oled_ccc.OLED_RST, PIN_MODE_OUTPUT);rt_pin_mode(oled_ccc.OLED_DC, PIN_MODE_OUTPUT);rt_pin_mode(oled_ccc.OLED_CS, PIN_MODE_OUTPUT);rt_pin_write(oled_ccc.OLED_SCLK, PIN_HIGH);rt_pin_write(oled_ccc.OLED_SDIN, PIN_HIGH);rt_pin_write(oled_ccc.OLED_RST, PIN_HIGH);rt_pin_write(oled_ccc.OLED_DC, PIN_HIGH);rt_pin_write(oled_ccc.OLED_CS, PIN_HIGH);OLED_RST_Clr();//复位rt_thread_mdelay(200);OLED_RST_Set();OLED_WR_Byte(0xAE,OLED_CMD);//--turn off oled panelOLED_WR_Byte(0x00,OLED_CMD);//---set low column addressOLED_WR_Byte(0x10,OLED_CMD);//---set high column addressOLED_WR_Byte(0x40,OLED_CMD);//--set start line address  Set Mapping RAM Display Start Line (0x00~0x3F)OLED_WR_Byte(0x81,OLED_CMD);//--set contrast control registerOLED_WR_Byte(0xCF,OLED_CMD);// Set SEG Output Current BrightnessOLED_WR_Byte(0xA1,OLED_CMD);//--Set SEG/Column Mapping     0xa0左右反置 0xa1正常OLED_WR_Byte(0xC8,OLED_CMD);//Set COM/Row Scan Direction   0xc0上下反置 0xc8正常OLED_WR_Byte(0xA6,OLED_CMD);//--set normal displayOLED_WR_Byte(0xA8,OLED_CMD);//--set multiplex ratio(1 to 64)OLED_WR_Byte(0x3f,OLED_CMD);//--1/64 dutyOLED_WR_Byte(0xD3,OLED_CMD);//-set display offset Shift Mapping RAM Counter (0x00~0x3F)OLED_WR_Byte(0x00,OLED_CMD);//-not offsetOLED_WR_Byte(0xd5,OLED_CMD);//--set display clock divide ratio/oscillator frequencyOLED_WR_Byte(0x80,OLED_CMD);//--set divide ratio, Set Clock as 100 Frames/SecOLED_WR_Byte(0xD9,OLED_CMD);//--set pre-charge periodOLED_WR_Byte(0xF1,OLED_CMD);//Set Pre-Charge as 15 Clocks & Discharge as 1 ClockOLED_WR_Byte(0xDA,OLED_CMD);//--set com pins hardware configurationOLED_WR_Byte(0x12,OLED_CMD);OLED_WR_Byte(0xDB,OLED_CMD);//--set vcomhOLED_WR_Byte(0x40,OLED_CMD);//Set VCOM Deselect LevelOLED_WR_Byte(0x20,OLED_CMD);//-Set Page Addressing Mode (0x00/0x01/0x02)OLED_WR_Byte(0x02,OLED_CMD);//OLED_WR_Byte(0x8D,OLED_CMD);//--set Charge Pump enable/disableOLED_WR_Byte(0x14,OLED_CMD);//--set(0x10) disableOLED_WR_Byte(0xA4,OLED_CMD);// Disable Entire Display On (0xa4/0xa5)OLED_WR_Byte(0xA6,OLED_CMD);// Disable Inverse Display On (0xa6/a7)OLED_WR_Byte(0xAF,OLED_CMD);OLED_Clear();}

4 实现效果

在这里插入图片描述

🧿 选题指导, 项目分享:

https://blog.csdn.net/molodi/article/details/125933857

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...