设X~N(μ,σ2)X\text{\large\textasciitilde}N(\mu,\sigma^2)X~N(μ,σ2),则XXX的概率密度为f(x)=12πσe−(x−μ)22σ2f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}f(x)=2πσ1e−2σ2(x−μ)2函数图像:钟形曲线,x=μx=\mux=μ为对称轴且为最大值点,最大值为12πσ\frac{1}{\sqrt{2\pi}\sigma}2πσ1,σ\sigmaσ越小图像越尖锐。
标准正态分布N(0,1)N(0,1)N(0,1):设X~N(0,1)X\text{\large\textasciitilde}N(0,1)X~N(0,1),则XXX的概率密度函数记作ϕ(x)=12πe−x22\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}ϕ(x)=2π1e−2x2XXX的分布函数记作Φ(x)\Phi(x)Φ(x),满足Φ(0)=12,Φ(−x)=1−Φ(x)\Phi(0)=\frac{1}{2},\quad\Phi(-x)=1-\Phi(x)Φ(0)=21,Φ(−x)=1−Φ(x)若X~N(μ,σ2)X\text{\large\textasciitilde}N(\mu,\sigma^2)X~N(μ,σ2),则Z=X−μσ~N(0,1)Z=\frac{X-\mu}{\sigma}\text{\large\textasciitilde}N(0,1)Z=σX−μ~N(0,1)。
X~N(μ,σ2)⟹Y=kX+b~N(kμ+b,k2σ2)X\text{\large\textasciitilde}N(\mu,\sigma^2)\implies Y=kX+b\,\text{\large\textasciitilde}\,N(k\mu+b,k^2\sigma^2)X~N(μ,σ2)⟹Y=kX+b~N(kμ+b,k2σ2)(其中b≠0b\ne0b=0)
X~N(μ,σ2)⟹E(X)=μ,D(X)=σ2,σ(x)=σX\text{\large\textasciitilde}N(\mu,\sigma^2)\implies E(X)=\mu,\ D(X)=\sigma^2,\ \sigma(x)=\sigmaX~N(μ,σ2)⟹E(X)=μ, D(X)=σ2, σ(x)=σ
中心极限定理:
中心极限定理 | 条件 | 结论(当nnn足够大时近似成立) |
---|---|---|
独立同分布中心极限定理 | 有有限的数学期望E(Xk)=μE(X_k)=\muE(Xk)=μ和方差D(Xk)=σ2≠0D(X_k)=\sigma^2\ne0D(Xk)=σ2=0 | X‾~N(μ,σ2n),∑k=1nXk~N(nμ,nσ2)\overline{X}\text{\large\textasciitilde}N\left(\mu,\frac{\sigma^2}{n}\right),\ \sum\limits_{k=1}^n X_k\text{\large\textasciitilde}N\left(n\mu,n\sigma^2\right)X~N(μ,nσ2), k=1∑nXk~N(nμ,nσ2) |
棣莫弗-拉普拉斯中心极限定理 | ηn~B(n,p)\eta_n\text{\large\textasciitilde}B(n,p)ηn~B(n,p) | X‾~N(p,p(1−p)n),ηn~N(np,np(1−p))\overline{X}\text{\large\textasciitilde}N\left(p,\frac{p(1-p)}{n}\right),\ \eta_n\text{\large\textasciitilde}N(np,np(1-p))X~N(p,np(1−p)), ηn~N(np,np(1−p)) |
设V\bm{V}V为nnn阶正定对称阵,μ=(μ1,μ2,⋯,μn)\bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n)μ=(μ1,μ2,⋯,μn)为nnn维已知向量。记x=(x1,x2,⋯,xn)∈Rn\bm{x}=(x_1,x_2,\cdots,x_n)\in\mathbb R^nx=(x1,x2,⋯,xn)∈Rn。若nnn维随机向量X=(X1,X2,⋯,Xn)\bm{X}=(X_1,X_2,\cdots,X_n)X=(X1,X2,⋯,Xn)的概率密度为f(x)=1(2π)n2∣V∣12exp{−12(x−μ)V−1(x−μ)T}f(\bm{x})=\frac{1}{(2\pi)^{\frac{n}{2}}|\bm{V}|^{\frac{1}{2}}}\exp\left\{-\frac{1}{2}(\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T\right\}f(x)=(2π)2n∣V∣211exp{−21(x−μ)V−1(x−μ)T}则称X\bm{X}X服从nnn维正态分布,记作X=(X1,X2,⋯,Xn)~N(μ,V)\bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})X=(X1,X2,⋯,Xn)~N(μ,V)。
nnn维正态分布的基本性质:
设X=(X1,X2,⋯,Xn)~N(μ,V)\bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})X=(X1,X2,⋯,Xn)~N(μ,V),则:
(1) μi=E(Xi)(i=1,2,⋯,n)\mu_i=E(X_i)(i=1,2,\cdots,n)μi=E(Xi)(i=1,2,⋯,n);
(2) V=(vij)n×n\bm{V}=(v_{ij})_{n\times n}V=(vij)n×n是X\bm{X}X的协方差矩阵,且D(Xi)=viiD(X_i)=v_{ii}D(Xi)=vii,Cov(Xi,Xj)=vij(i,j=1,2,⋯,n)\text{Cov}(X_i,X_j)=v_{ij}(i,j=1,2,\cdots,n)Cov(Xi,Xj)=vij(i,j=1,2,⋯,n);
(3) Xi~N(μi,vii)X_i\text{\large\textasciitilde}N(\mu_i,v_{ii})Xi~N(μi,vii);
(4) X1,X2,⋯,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn相互独立⟺X1,X2,⋯,Xn{\color{red}\iff}X_1,X_2,\cdots,X_n⟺X1,X2,⋯,Xn两两互不相关⟺V=diag(v11,v22,⋯,vnn)\iff\bm{V}=\text{diag}(v_{11},v_{22},\cdots,v_{nn})⟺V=diag(v11,v22,⋯,vnn);
(5) 若X1,X2,⋯,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn相互独立,且各Xi~N(μi,σi2)X_i\text{\large\textasciitilde}N(\mu_i,\sigma_i^2)Xi~N(μi,σi2),则(X1,X2,⋯,Xn)~N(μ,V)(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})(X1,X2,⋯,Xn)~N(μ,V),其中μ=(μ1,μ2,⋯,μn)\bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n)μ=(μ1,μ2,⋯,μn),V=diag(σ12,σ22,⋯,σn2)\bm{V}=\text{diag}(\sigma_1^2,\sigma_2^2,\cdots,\sigma_n^2)V=diag(σ12,σ22,⋯,σn2);
(6) (X1,X2,⋯,Xn)~N(μ,V)⟺X1,X2,⋯,Xn(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})\iff X_1,X_2,\cdots,X_n(X1,X2,⋯,Xn)~N(μ,V)⟺X1,X2,⋯,Xn的任一非零线性组合l1X1+l2X2+⋯+lnXnl_1X_1+l_2X_2+\cdots+l_nX_nl1X1+l2X2+⋯+lnXn服从一维正态分布;
(7)(正态随机向量的线性变换不变性) 若(X1,X2,⋯,Xn)~N(μ,V)(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})(X1,X2,⋯,Xn)~N(μ,V),令{Y1=a11X1+a12X2+⋯+a1nXnY2=a21X1+a22X2+⋯+a2nXn⋮Ym=am1X1+am2X2+⋯+amnXn\begin{cases}Y_1=a_{11}X_1+a_{12}X_2+\cdots+a_{1n}X_n\\Y_2=a_{21}X_1+a_{22}X_2+\cdots+a_{2n}X_n\\\vdots\\Y_m=a_{m1}X_1+a_{m2}X_2+\cdots+a_{mn}X_n\end{cases}⎩⎨⎧Y1=a11X1+a12X2+⋯+a1nXnY2=a21X1+a22X2+⋯+a2nXn⋮Ym=am1X1+am2X2+⋯+amnXn则Y=(Y1,Y2,⋯,Ym)\bm{Y}=(Y_1,Y_2,\cdots,Y_m)Y=(Y1,Y2,⋯,Ym)仍服从多维正态分布。
(X,Y)~N(μ1,μ2;σ12,σ22;ρ)(X,Y)\text{\large\textasciitilde}N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)(X,Y)~N(μ1,μ2;σ12,σ22;ρ),则其概率密度为f(x,y)=12πσ1σ21−ρ2e−12(1−ρ2)[(x−μ1)2σ12−2ρ(x−μ1)(y−μ2)σ1σ2+(y−μ2)2σ22],x,y∈Rf(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]},x,y\in\mathbb Rf(x,y)=2πσ1σ21−ρ21e−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2],x,y∈R其中ρ\rhoρ就是XXX和YYY的相关系数,X~N(μ1,σ12)X\text{\large\textasciitilde}N(\mu_1,\sigma_1^2)X~N(μ1,σ12),Y~N(μ2,σ22)Y\text{\large\textasciitilde}N(\mu_2,\sigma_2^2)Y~N(μ2,σ22)。
推导过程:
Cov(X,Y)=ρ(X,Y)D(x)D(Y)=ρσ1σ2\text{Cov}(X,Y)=\rho(X,Y)\sqrt{D(x)}\sqrt{D(Y)}=\rho\sigma_1\sigma_2Cov(X,Y)=ρ(X,Y)D(x)D(Y)=ρσ1σ2V=(D(x)Cov(X,Y)Cov(X,Y)D(Y))=(σ12ρσ1σ2ρσ1σ2σ22)\bm{V}=\begin{pmatrix}D(x)&\text{Cov}(X,Y)\\\text{Cov}(X,Y)&D(Y)\end{pmatrix}=\begin{pmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix}V=(D(x)Cov(X,Y)Cov(X,Y)D(Y))=(σ12ρσ1σ2ρσ1σ2σ22)det(V)=σ12σ22−ρ2σ12σ22=(1−ρ2)σ12σ22\det(\bm{V})=\sigma_1^2\sigma_2^2-\rho^2\sigma_1^2\sigma_2^2=(1-\rho^2)\sigma_1^2\sigma_2^2det(V)=σ12σ22−ρ2σ12σ22=(1−ρ2)σ12σ22V−1=1∣V∣(σ22−ρσ1σ2−ρσ1σ2σ12)\bm{V}^{-1}=\frac{1}{|\bm{V}|}\begin{pmatrix}\sigma_2^2&-\rho\sigma_1\sigma_2\\-\rho\sigma_1\sigma_2&\sigma_1^2\end{pmatrix}V−1=∣V∣1(σ22−ρσ1σ2−ρσ1σ2σ12)(x−μ)V−1(x−μ)T=1(1−ρ2)σ12σ22[σ22(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ12(x−μ2)2](\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T=\frac{1}{(1-\rho^2)\sigma_1^2\sigma_2^2}\left[\sigma_2^2(x-\mu_1)^2-2\rho\sigma_1\sigma_2(x-\mu_1)(y-\mu_2)+\sigma_1^2(x-\mu_2)^2\right](x−μ)V−1(x−μ)T=(1−ρ2)σ12σ221[σ22(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ12(x−μ2)2]化简得(x−μ)V−1(x−μ)T=1(1−ρ2)[(x−μ1)2σ12−2ρ(x−μ1)(y−μ2)σ1σ2+(y−μ2)2σ22](\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T=\frac{1}{(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right](x−μ)V−1(x−μ)T=(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]将以上式子代入多维正态分布的概率密度函数公式,即得f(x,y)=12πσ1σ21−ρ2e−12(1−ρ2)[(x−μ1)2σ12−2ρ(x−μ1)(y−μ2)σ1σ2+(y−μ2)2σ22],x,y∈Rf(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]},x,y\in\mathbb Rf(x,y)=2πσ1σ21−ρ21e−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2],x,y∈R函数图像: