R语言实现向量自回归VAR模型
创始人
2024-03-24 21:41:16
0

澳大利亚在2008 - 2009年全球金融危机期间发生了这种情况。政府发布了一揽子刺激计划,其中包括2008年12月的现金支付,恰逢圣诞节支出。因此,零售商报告销售强劲,经济受到刺激,收入增加了。

最近我们被客户要求撰写关于向量自回归VAR模型的研究报告,包括一些图形和统计输出。

相关视频:向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例

【视频】向量自回归VAR数学原理及R语言软件经济数据脉冲响应分析实例

,时长12:01

VAR面临的批评是他们是理论上的; 也就是说,它们不是建立在一些经济学理论的基础上。假设每个变量都影响系统中的每个其他变量,这使得估计系数的直接解释变得困难。尽管如此,VAR在几种情况下都很有用:

  1. 预测相关变量的集合,不需要明确的解释;
  2. 测试一个变量是否有助于预测另一个变量(格兰杰因果关系检验的基础);
  3. 脉冲响应分析,其中分析了一个变量对另一个变量的突然但暂时的变化的响应;
  4. 预测误差方差分解,其中每个变量的预测方差的比例归因于其他变量的影响。

示例:用于预测消费的VAR模型

 
VARselect(uschange[,1:2], lag.max=8,
type="const")[["selection"]]
#> AIC(n) HQ(n) SC(n) FPE(n)
#> 5 1 1 5

R输出显示由vars包中可用的每个信息标准选择的滞后长度。由AIC选择的VAR(5)与BIC选择的VAR(1)之间存在很大差异。因此,我们首先拟合由BIC选择的VAR(1)。

var1 <- VAR(uschange[,1:2], p=1, type="const")
serial.test(var1, lags.pt=10, type="PT.asymptotic")
...

与单变量ARIMA方法类似,我们使用Portmanteau测试残差是不相关的。VAR(1)和VAR(2)都具有一些残差序列相关性,因此我们拟合VAR(3)。

...
serial.test(...)
#>
#> Portmanteau Test (asymptotic)
#>
#> data: Residuals of VAR object var3
#> Chi-squared = 34, df = 28, p-value = 0.2

该模型的残差通过了序列相关的测试。VAR(3)生成的预测如图 所示。

​
forecast(var3) %>%...​

R语言实现向量自回归VAR模型

图 :消费和收入的VAR预测

相关内容

热门资讯

【PdgCntEditor】解... 一、问题背景 大部分的图书对应的PDF,目录中的页码并非PDF中直接索引的页码...
监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
修复 爱普生 EPSON L4... L4151 L4153 L4156 L4158 L4163 L4165 L4166 L4168 L4...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
ChatGPT 怎么用最新详细... ChatGPT 以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...