LeetCode刷题复盘笔记—一文搞懂完全背包之377. 组合总和 Ⅳ问题(动态规划系列第十二篇)
创始人
2024-03-18 16:38:32
0

今日主要总结一下动态规划完全背包的一道题目,377. 组合总和 Ⅳ

题目:377. 组合总和 Ⅳ

Leetcode题目地址
题目描述:
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
示例 2:

输入:nums = [9], target = 3
输出:0

提示:

1 <= nums.length <= 200
1 <= nums[i] <= 1000
nums 中的所有元素 互不相同
1 <= target <= 1000

本题重难点

这是一道典型的背包问题,本题给定的数组里面的元素可以重复取,所以这是一个完全背包。

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义
    dp[i]: 凑成目标正整数为i的排列个数为dp[i]

  2. 确定递推公式
    dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。
    因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。
    在一文搞懂0 - 1背包之494. 目标和问题和 一文搞懂完全背包之518. 零钱兑换 II问题中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
    本题也一样。

  3. dp数组如何初始化
    因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。
    至于dp[0] = 1 有没有意义呢?
    其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。
    至于非0下标的dp[i]应该初始为多少呢?
    初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

  4. 确定遍历顺序
    个数可以不限使用,说明这是一个完全背包。
    得到的集合是排列,说明需要考虑元素之间的顺序。
    本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。
    在一文搞懂完全背包之518. 零钱兑换 II问题中就已经讲过了。
    如果求组合数就是外层for循环遍历物品,内层for遍历背包。
    如果求排列数就是外层for遍历背包,内层for循环遍历物品。
    如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
    所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

  5. 举例来推导dp数组

我们再来用示例中的例子推导一下: 在这里插入图片描述:
在这里插入图片描述

C++代码

class Solution {
public:int combinationSum4(vector& nums, int target) {vectordp(target + 1, 0);dp[0] = 1;for(int i = 0; i <= target; i++){for(int j = 0; j < nums.size(); j++){if(i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]] ){dp[i] += dp[i - nums[j]];}}}return dp[target];}
};

C++测试用例有两个数相加超过int的数据,所以需要在if里加上
dp[i] < INT_MAX - dp[i - num]。


总结

动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的

对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

这篇文章主要总结了一些动态规划解决518. 零钱兑换 II问题,依然是使用动规五部曲,做每道动态规划题目这五步都要弄清楚才能更清楚的理解题目!

求装满背包有几种方法,递归公式都是一样的,没有什么差别,我们在一文搞懂0 - 1背包之494. 目标和问题中就已经讲过了

dp[j] += dp[j - nums[i]];

本题的难点主要在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

  • 如果求组合数就是外层for循环遍历物品,内层for遍历背包。(也就是0-1背包一维dp数组常用写法)

  • 如果求排列数就是外层for遍历背包,内层for循环遍历物品。

本题与一文搞懂完全背包之518. 零钱兑换 II问题就是一个鲜明的对比,一个是求排列,一个是求组合,遍历顺序完全不同。

欢迎大家关注本人公众号:编程复盘与思考随笔

(关注后可以免费获得本人在csdn发布的资源源码)

相关内容

热门资讯

监控摄像头接入GB28181平... 流程简介将监控摄像头的视频在网站和APP中直播,要解决的几个问题是:1&...
Windows10添加群晖磁盘... 在使用群晖NAS时,我们需要通过本地映射的方式把NAS映射成本地的一块磁盘使用。 通过...
protocol buffer... 目录 目录 什么是protocol buffer 1.protobuf 1.1安装  1.2使用...
在Word、WPS中插入AxM... 引言 我最近需要写一些文章,在排版时发现AxMath插入的公式竟然会导致行间距异常&#...
Fluent中创建监测点 1 概述某些仿真问题,需要创建监测点,用于获取空间定点的数据࿰...
educoder数据结构与算法...                                                   ...
MySQL下载和安装(Wind... 前言:刚换了一台电脑,里面所有东西都需要重新配置,习惯了所...
MFC文件操作  MFC提供了一个文件操作的基类CFile,这个类提供了一个没有缓存的二进制格式的磁盘...
有效的括号 一、题目 给定一个只包括 '(',')','{','}'...
【Ctfer训练计划】——(三... 作者名:Demo不是emo  主页面链接:主页传送门 创作初心ÿ...